qpms/misc/dispersion-SVD.py

548 lines
26 KiB
Python
Executable File
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
import argparse, re, random, string
import subprocess
from scipy.constants import hbar, e as eV, pi, c
def make_action_sharedlist(opname, listname):
class opAction(argparse.Action):
def __call__(self, parser, args, values, option_string=None):
if (not hasattr(args, listname)) or getattr(args, listname) is None:
setattr(args, listname, list())
getattr(args,listname).append((opname, values))
return opAction
parser = argparse.ArgumentParser()
#TODO? použít type=argparse.FileType('r') ?
parser.add_argument('--TMatrix', action='store', required=True, help='Path to TMatrix file')
parser.add_argument('--griddir', action='store', required=True, help='Path to the directory with precalculated translation operators')
#sizepar = parser.add_mutually_exclusive_group(required=True)
parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length')
parser.add_argument('--output', action='store', help='Path to output PDF')
parser.add_argument('--store_SVD', action='store_true', help='If specified without --SVD_output, it will save the data in a file named as the PDF output, but with .npz extension instead')
#parser.add_argument('--SVD_output', action='store', help='Path to output singular value decomposition result')
parser.add_argument('--nSV', action='store', metavar='N', type=int, default=1, help='Store and draw N minimun singular values')
parser.add_argument('--scp_to', action='store', metavar='N', type=str, help='SCP the output files to a given destination')
parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)')
parser.add_argument('--sparse', action='store', type=int, help='Skip frequencies for preview')
parser.add_argument('--eVmax', action='store', type=float, help='Skip frequencies above this value')
parser.add_argument('--eVmin', action='store', type=float, help='Skip frequencies below this value')
parser.add_argument('--kdensity', action='store', type=int, default=66, help='Number of k-points per x-axis segment')
parser.add_argument('--lMax', action='store', type=int, help='Override lMax from the TMatrix file')
#TODO some more sophisticated x axis definitions
parser.add_argument('--gaussian', action='store', type=float, metavar='σ', help='Use a gaussian envelope for weighting the interaction matrix contributions (depending on the distance), measured in unit cell lengths (?) FIxME).')
popgrp=parser.add_argument_group(title='Operations')
popgrp.add_argument('--tr', dest='ops', action=make_action_sharedlist('tr', 'ops'), default=list()) # the default value for dest can be set once
popgrp.add_argument('--tr0', dest='ops', action=make_action_sharedlist('tr0', 'ops'))
popgrp.add_argument('--tr1', dest='ops', action=make_action_sharedlist('tr1', 'ops'))
popgrp.add_argument('--sym', dest='ops', action=make_action_sharedlist('sym', 'ops'))
popgrp.add_argument('--sym0', dest='ops', action=make_action_sharedlist('sym0', 'ops'))
popgrp.add_argument('--sym1', dest='ops', action=make_action_sharedlist('sym1', 'ops'))
#popgrp.add_argument('--mult', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult', 'ops'))
#popgrp.add_argument('--mult0', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult0', 'ops'))
#popgrp.add_argument('--mult1', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult1', 'ops'))
popgrp.add_argument('--multl', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl', 'ops'))
popgrp.add_argument('--multl0', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl0', 'ops'))
popgrp.add_argument('--multl1', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl1', 'ops'))
parser.add_argument('--frequency_multiplier', action='store', type=float, default=1., help='Multiplies the frequencies in the TMatrix file by a given factor.')
# TODO enable more flexible per-sublattice specification
pargs=parser.parse_args()
print(pargs)
translations_dir = pargs.griddir
TMatrix_file = pargs.TMatrix
pdfout = pargs.output if pargs.output else (''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) + '.pdf')
print(pdfout)
if(pargs.store_SVD):
if re.search('.pdf$', pdfout):
svdout = re.sub('.pdf$', r'.npz', pdfout)
else:
svdout = pdfout + '.npz'
else:
svdout = None
hexside = pargs.hexside #375e-9
epsilon_b = pargs.background_permittivity #2.3104
gaussianSigma = pargs.gaussian if pargs.gaussian else None # hexside * 222 / 7
interpfreqfactor = pargs.frequency_multiplier
scp_dest = pargs.scp_to if pargs.scp_to else None
kdensity = pargs.kdensity
minfreq = pargs.eVmin*eV/hbar if pargs.eVmin else None
maxfreq = pargs.eVmax*eV/hbar if pargs.eVmax else None
skipfreq = pargs.sparse if pargs.sparse else None
svn = pargs.nSV
# TODO multiplier operation definitions and parsing
#factor13inc = 10
#factor13scat=10
ops = list()
opre = re.compile('(tr|sym|copy|multl|mult)(\d*)')
for oparg in pargs.ops:
opm = opre.match(oparg[0])
if opm:
ops.append(((opm.group(2),) if opm.group(2) else (0,1), opm.group(1), oparg[1]))
else:
raise # should not happen
print(ops)
#ops = (
# # co, typ operace (symetrizace / transformace / kopie), specifikace (operace nebo zdroj),
# # co: 0, 1, (0,1), (0,), (1,), #NI: 'all'
# # typ operace: sym, tr, copy
# # specifikace:
# # sym, tr: 'σ_z', 'σ_y', 'C2'; sym: 'C3',
# # copy: 0, 1 (zdroj)
# ((0,1), 'sym', 'σ_z'),
# #((0,1), 'sym', 'σ_x'),
# #((0,1), 'sym', 'σ_y'),
# ((0,1), 'sym', 'C3'),
# ((1), 'tr', 'C2'),
#
#)
# -----------------finished basic CLI parsing (except for op arguments) ------------------
import time
begtime=time.time()
from matplotlib.path import Path
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import qpms
import numpy as np
import os, sys, warnings, math
from matplotlib import pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
from scipy import interpolate
nx = None
s3 = math.sqrt(3)
pdf = PdfPages(pdfout)
# In[3]:
# specifikace T-matice zde
cdn = c/ math.sqrt(epsilon_b)
TMatrices_orig, freqs_orig, freqs_weirdunits_orig, lMaxTM = qpms.loadScuffTMatrices(TMatrix_file)
if pargs.lMax:
lMax = pargs.lMax if pargs.lMax else lMaxTM
my, ny = qpms.get_mn_y(lMax)
nelem = len(my)
if pargs.lMax: #force commandline specified lMax
TMatrices_orig = TMatrices_orig[...,0:nelem,:,0:nelem]
ž = np.arange(2*nelem)
= ž // nelem
= my[ž%nelem]
= ny[ž%nelem]
TEž = ž[(++) % 2 == 0]
TMž = ž[(++) % 2 == 1]
č = np.arange(2*2*nelem)
žč = č % (2* nelem)
= [žč]
= [žč]
= [žč]
TEč = č[(++) % 2 == 0]
TMč = č[(++) % 2 == 1]
TMatrices = np.array(np.broadcast_to(TMatrices_orig[:,nx,:,:,:,:],(len(freqs_orig),2,2,nelem,2,nelem)) )
#TMatrices[:,:,:,:,:,ny==3] *= factor13inc
#TMatrices[:,:,:,ny==3,:,:] *= factor13scat
xfl = qpms.xflip_tyty(lMax)
yfl = qpms.yflip_tyty(lMax)
zfl = qpms.zflip_tyty(lMax)
c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3),qpms.xflip_yy(3),-1)
reCN = re.compile('(\d*)C(\d+)')
#TODO C nekonečno
for op in ops:
if op[0] == 'all':
targets = (0,1)
elif isinstance(op[0],int):
targets = (op[0],)
else:
targets = op[0]
if op[1] == 'sym':
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
if op[2] == 'σ_z':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'σ_y':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'σ_x':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'C2': # special case of the latter
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1))/2
elif mCN:
rotN = int(mCN.group(2))
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
for t in targets:
for i in range(rotN):
rotangle = 2*np.pi*i / rotN
rot = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,rotangle]))
rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle]))
TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
TMatrices[:,t] = np.sum(TMatrix_contribs, axis=0) / rotN
else:
raise
elif op[1] == 'tr':
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
if op[2] == 'σ_z':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'σ_y':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'σ_x':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'C2':
for t in targets:
TMatrices[:,t] = qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1)
elif mCN:
rotN = int(mCN.group(2))
power = int(mCN.group(1)) if mCN.group(1) else 1
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
for t in targets:
rotangle = 2*np.pi*power/rotN
rot = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,rotangle]))
rotinv = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle]))
TMatrices[:,t] = qpms.apply_matrix_left(rot, qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
else:
raise
elif op[1] == 'copy':
raise # not implemented
elif op[1] == 'mult':
raise # not implemented
elif op[1] == 'multl':
incy = np.full((nelem,), False, dtype=bool)
for incl in op[2][0].split(','):
l = int(incl)
incy += (l == ny)
scaty = np.full((nelem,), False, dtype=bool)
for scatl in op[2][1].split(','):
l = int(scatl)
scaty += (l == ny)
for t in targets:
TMatrices[np.ix_(np.arange(TMatrices.shape[0]),np.array([t]),np.array([0,1]),scaty,np.array([0,1]),incy)] *= float(op[2][2])
else:
raise #unknown operation; should not happen
TMatrices_interp = interpolate.interp1d(freqs_orig*interpfreqfactor, TMatrices, axis=0, kind='linear',fill_value="extrapolate")
# In[4]:
om = np.linspace(np.min(freqs_orig), np.max(freqs_orig),100)
TMatrix0ip = np.reshape(TMatrices_interp(om)[:,0], (len(om), 2*nelem*2*nelem))
f, axa = plt.subplots(2, 2, figsize=(15,15))
#print(TMatrices.shape)
#plt.plot(om, TMatrices[:,0,0,0,0].imag,'r',om, TMatrices[:,0,0,0,0].real,'r--',om, TMatrices[:,0,2,0,2].imag,'b',om, TMatrices[:,0,2,0,2].real,'b--'))
ax = axa[0,0]
ax2 = ax.twiny()
ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar])
ax.plot(
om, TMatrix0ip[:,:].imag,'-',om, TMatrix0ip[:,:].real,'--',
)
ax = axa[0,1]
ax2 = ax.twiny()
ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar])
ax.plot(
om, abs(TMatrix0ip[:,:]),'-'
)
ax.set_yscale('log')
ax = axa[1,1]
ax2 = ax.twiny()
ax2.set_xlim([ax.get_xlim()[0]/eV*hbar,ax.get_xlim()[1]/eV*hbar])
ax.plot(
om, np.unwrap(np.angle(TMatrix0ip[:,:]),axis=0),'-'
)
ax = axa[1,0]
ax.text(0.5,0.5,str(pargs).replace(',',',\n'),horizontalalignment='center',verticalalignment='center',transform=ax.transAxes)
pdf.savefig(f)
# In[ ]:
#kdensity = 66 #defined from cl arguments
bz_0 = np.array((0,0,0.,))
bz_K1 = np.array((1.,0,0))*4*np.pi/3/hexside/s3
bz_K2 = np.array((1./2.,s3/2,0))*4*np.pi/3/hexside/s3
bz_M = np.array((3./4, s3/4,0))*4*np.pi/3/hexside/s3
k0Mlist = bz_0 + (bz_M-bz_0) * np.linspace(0,1,kdensity)[:,nx]
kMK1list = bz_M + (bz_K1-bz_M) * np.linspace(0,1,kdensity)[:,nx]
kK10list = bz_K1 + (bz_0-bz_K1) * np.linspace(0,1,kdensity)[:,nx]
k0K2list = bz_0 + (bz_K2-bz_0) * np.linspace(0,1,kdensity)[:,nx]
kK2Mlist = bz_K2 + (bz_M-bz_K2) * np.linspace(0,1,kdensity)[:,nx]
B1 = 2* bz_K1 - bz_K2
B2 = 2* bz_K2 - bz_K1
klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0)
kxmaplist = np.concatenate((np.array([0]),np.cumsum(np.linalg.norm(np.diff(klist, axis=0), axis=-1))))
# In[ ]:
n2id = np.identity(2*nelem)
n2id.shape = (2,nelem,2,nelem)
extlistlist = list()
leftmatrixlistlist = list()
minsvTElistlist=list()
minsvTMlistlist=list()
if svdout:
svUfullTElistlist = list()
svVfullTElistlist = list()
svSfullTElistlist = list()
svUfullTMlistlist = list()
svVfullTMlistlist = list()
svSfullTMlistlist = list()
nan = float('nan')
omegalist = list()
filecount = 0
for trfile in os.scandir(translations_dir):
filecount += 1
if (skipfreq and filecount % skipfreq):
continue
try:
npz = np.load(trfile.path, mmap_mode='r')
k_0 = npz['precalc_params'][()]['k_hexside'] / hexside
omega = k_0 * c / math.sqrt(epsilon_b)
if((minfreq and omega < minfreq) or (maxfreq and omega > maxfreq)):
continue
except:
print ("Unexpected error, trying to continue with another file:", sys.exc_info()[0])
continue
try:
tdic = qpms.hexlattice_precalc_AB_loadunwrap(trfile.path, return_points=True)
except:
print ("Unexpected error, trying to continue with another file:", sys.exc_info()[0])
continue
k_0 = tdic['k_hexside'] / hexside
omega = k_0 * c / math.sqrt(epsilon_b)
omegalist.append(omega)
print(filecount, omega/eV*hbar)
sys.stdout.flush()
a_self = tdic['a_self'][:,:nelem,:nelem]
b_self = tdic['b_self'][:,:nelem,:nelem]
a_u2d = tdic['a_u2d'][:,:nelem,:nelem]
b_u2d = tdic['b_u2d'][:,:nelem,:nelem]
a_d2u = tdic['a_d2u'][:,:nelem,:nelem]
b_d2u = tdic['b_d2u'][:,:nelem,:nelem]
unitcell_translations = tdic['self_tr']*hexside*s3
u2d_translations = tdic['u2d_tr']*hexside*s3
d2u_translations = tdic['d2u_tr']*hexside*s3
if gaussianSigma:
unitcell_envelope = np.exp(-np.sum(tdic['self_tr']**2,axis=-1)/(2*gaussianSigma**2))
u2d_envelope = np.exp(-np.sum(tdic['u2d_tr']**2,axis=-1)/(2*gaussianSigma**2))
d2u_envelope = np.exp(-np.sum(tdic['d2u_tr']**2,axis=-1)/(2*gaussianSigma**2))
TMatrices_om = TMatrices_interp(omega)
if svdout:
svUfullTElist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
svVfullTElist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
svSfullTElist = np.full((klist.shape[0], 2*nelem), np.nan, dtype=complex)
svUfullTMlist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
svVfullTMlist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
svSfullTMlist = np.full((klist.shape[0], 2*nelem), np.nan, dtype=complex)
minsvTElist = np.full((klist.shape[0], svn),np.nan)
minsvTMlist = np.full((klist.shape[0], svn),np.nan)
leftmatrixlist = np.full((klist.shape[0],2,2,nelem,2,2,nelem),np.nan,dtype=complex)
isNaNlist = np.zeros((klist.shape[0]), dtype=bool)
# sem nějaká rozumná smyčka
for ki in range(klist.shape[0]):
k = klist[ki]
if (k_0*k_0 - k[0]*k[0] - k[1]*k[1] < 0):
isNaNlist[ki] = True
continue
phases_self = np.exp(1j*np.tensordot(k,unitcell_translations,axes=(0,-1)))
phases_u2d = np.exp(1j*np.tensordot(k,u2d_translations,axes=(0,-1)))
phases_d2u = np.exp(1j*np.tensordot(k,d2u_translations,axes=(0,-1)))
if gaussianSigma:
phases_self *= unitcell_envelope
phases_u2d *= u2d_envelope
phases_d2u *= d2u_envelope
leftmatrix = np.zeros((2,2,nelem, 2,2,nelem), dtype=complex)
leftmatrix[0,0,:,0,0,:] = np.tensordot(a_self,phases_self, axes=(0,-1)) # u2u, E2E
leftmatrix[1,0,:,1,0,:] = leftmatrix[0,0,:,0,0,:] # d2d, E2E
leftmatrix[0,1,:,0,1,:] = leftmatrix[0,0,:,0,0,:] # u2u, M2M
leftmatrix[1,1,:,1,1,:] = leftmatrix[0,0,:,0,0,:] # d2d, M2M
leftmatrix[0,0,:,0,1,:] = np.tensordot(b_self,phases_self, axes=(0,-1)) # u2u, M2E
leftmatrix[0,1,:,0,0,:] = leftmatrix[0,0,:,0,1,:] # u2u, E2M
leftmatrix[1,1,:,1,0,:] = leftmatrix[0,0,:,0,1,:] # d2d, E2M
leftmatrix[1,0,:,1,1,:] = leftmatrix[0,0,:,0,1,:] # d2d, M2E
leftmatrix[0,0,:,1,0,:] = np.tensordot(a_d2u, phases_d2u,axes=(0,-1)) #d2u,E2E
leftmatrix[0,1,:,1,1,:] = leftmatrix[0,0,:,1,0,:] #d2u, M2M
leftmatrix[1,0,:,0,0,:] = np.tensordot(a_u2d, phases_u2d,axes=(0,-1)) #u2d,E2E
leftmatrix[1,1,:,0,1,:] = leftmatrix[1,0,:,0,0,:] #u2d, M2M
leftmatrix[0,0,:,1,1,:] = np.tensordot(b_d2u, phases_d2u,axes=(0,-1)) #d2u,M2E
leftmatrix[0,1,:,1,0,:] = leftmatrix[0,0,:,1,1,:] #d2u, E2M
leftmatrix[1,0,:,0,1,:] = np.tensordot(b_u2d, phases_u2d,axes=(0,-1)) #u2d,M2E
leftmatrix[1,1,:,0,0,:] = leftmatrix[1,0,:,0,1,:] #u2d, E2M
#leftmatrix is now the translation matrix T
for j in range(2):
leftmatrix[j] = -np.tensordot(TMatrices_om[j], leftmatrix[j], axes=([-2,-1],[0,1]))
# at this point, jth row of leftmatrix is that of -MT
leftmatrix[j,:,:,j,:,:] += n2id
#now we are done, 1-MT
leftmatrixlist[ki] = leftmatrix
nnlist = np.logical_not(isNaNlist)
leftmatrixlist_s = np.reshape(leftmatrixlist,(klist.shape[0], 2*2*nelem,2*2*nelem))[nnlist]
leftmatrixlist_TE = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TEč,TEč)]
leftmatrixlist_TM = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TMč,TMč)]
#svarr = np.linalg.svd(leftmatrixlist_TE, compute_uv=False)
#argsortlist = np.argsort(svarr, axis=-1)[...,:svn]
#minsvTElist[nnlist] = svarr[...,argsortlist]
#minsvTElist[nnlist] = np.amin(np.linalg.svd(leftmatrixlist_TE, compute_uv=False), axis=-1)
if svdout:
svUfullTElist[nnlist], svSfullTElist[nnlist], svVfullTElist[nnlist] = np.linalg.svd(leftmatrixlist_TE, compute_uv=True)
svUfullTMlist[nnlist], svSfullTMlist[nnlist], svVfullTMlist[nnlist] = np.linalg.svd(leftmatrixlist_TM, compute_uv=True)
svUfullTElistlist.append(svUfullTElist)
svVfullTElistlist.append(svVfullTElist)
svSfullTElistlist.append(svSfullTElist)
svUfullTMlistlist.append(svUfullTMlist)
svVfullTMlistlist.append(svVfullTMlist)
svSfullTMlistlist.append(svSfullTMlist)
minsvTElist[nnlist] = np.linalg.svd(leftmatrixlist_TE, compute_uv=False)[...,-svn:]
#svarr = np.linalg.svd(leftmatrixlist_TM, compute_uv=False)
#argsortlist = np.argsort(svarr, axis=-1)[...,:svn]
#minsvTMlist[nnlist] = svarr[...,argsortlist]
#minsvTMlist[nnlist] = np.amin(np.linalg.svd(leftmatrixlist_TM, compute_uv=False), axis=-1)
minsvTMlist[nnlist] = np.linalg.svd(leftmatrixlist_TM, compute_uv=False)[...,-svn:]
minsvTMlistlist.append(minsvTMlist)
minsvTElistlist.append(minsvTElist)
minsvTElistarr = np.array(minsvTElistlist)
minsvTMlistarr = np.array(minsvTMlistlist)
del minsvTElistlist, minsvTMlistlist
if svdout:
svUfullTElistarr = np.array(svUfullTElistlist)
svVfullTElistarr = np.array(svVfullTElistlist)
svSfullTElistarr = np.array(svSfullTElistlist)
del svUfullTElistlist, svVfullTElistlist, svSfullTElistlist
svUfullTMlistarr = np.array(svUfullTMlistlist)
svVfullTMlistarr = np.array(svVfullTMlistlist)
svSfullTMlistarr = np.array(svSfullTMlistlist)
del svUfullTMlistlist, svVfullTMlistlist, svSfullTMlistlist
omegalist = np.array(omegalist)
# order to make the scatter plots "nice"
omegaorder = np.argsort(omegalist)
omegalist = omegalist[omegaorder]
minsvTElistarr = minsvTElistarr[omegaorder]
minsvTMlistarr = minsvTMlistarr[omegaorder]
if svdout:
svUfullTElistarr = svUfullTElistarr[omegaorder]
svVfullTElistarr = svVfullTElistarr[omegaorder]
svSfullTElistarr = svSfullTElistarr[omegaorder]
svUfullTMlistarr = svUfullTMlistarr[omegaorder]
svVfullTMlistarr = svVfullTMlistarr[omegaorder]
svSfullTMlistarr = svSfullTMlistarr[omegaorder]
np.savez(svdout, omega = omegalist, klist = klist, bzpoints = np.array([bz_0, bz_K1, bz_K2, bz_M, B1, B2]),
uTE = svUfullTElistarr,
vTE = svVfullTElistarr,
sTE = svSfullTElistarr,
uTM = svUfullTMlistarr,
vTM = svVfullTMlistarr,
sTM = svSfullTMlistarr,
)
omlist = np.broadcast_to(omegalist[:,nx], minsvTElistarr[...,0].shape)
kxmlarr = np.broadcast_to(kxmaplist[nx,:], minsvTElistarr[...,0].shape)
klist = np.concatenate((k0Mlist,kMK1list,kK10list,k0K2list,kK2Mlist), axis=0)
# In[ ]:
for minN in reversed(range(svn)):
f, ax = plt.subplots(1, figsize=(20,15))
sc = ax.scatter(kxmlarr, omlist/eV*hbar, c = np.sqrt(minsvTMlistarr[...,minN]), s =40, lw=0)
ax.plot(kxmaplist, np.linalg.norm(klist,axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B2-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B2+B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B2-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B2+B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B2-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B1-B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B1-2*B2, axis=-1)*cdn/eV*hbar, '-',
# kxmaplist, np.linalg.norm(klist+2*B2-B1, axis=-1)*cdn, '-',
# kxmaplist, np.linalg.norm(klist+2*B1-B2, axis=-1)*cdn, '-',
)
ax.set_xlim([np.min(kxmlarr),np.max(kxmlarr)])
#ax.set_ylim([2.15,2.30])
ax.set_ylim([np.min(omlist/eV*hbar),np.max(omlist/eV*hbar)])
ax.set_xticks([0, kxmaplist[len(k0Mlist)-1], kxmaplist[len(k0Mlist)+len(kMK1list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)+len(kK2Mlist)-1]])
ax.set_xticklabels(['Γ', 'M', 'K', 'Γ', 'K\'','M'])
f.colorbar(sc)
pdf.savefig(f)
# In[ ]:
f, ax = plt.subplots(1, figsize=(20,15))
sc = ax.scatter(kxmlarr, omlist/eV*hbar, c = np.sqrt(minsvTElistarr[...,minN]), s =40, lw=0)
ax.plot(kxmaplist, np.linalg.norm(klist,axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B2-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B2+B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-B2-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist+B2+B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B2-B1, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B1-B2, axis=-1)*cdn/eV*hbar, '-',
kxmaplist, np.linalg.norm(klist-2*B1-2*B2, axis=-1)*cdn/eV*hbar, '-',
# kxmaplist, np.linalg.norm(klist+2*B2-B1, axis=-1)*cdn, '-',
# kxmaplist, np.linalg.norm(klist+2*B1-B2, axis=-1)*cdn, '-',
)
ax.set_xlim([np.min(kxmlarr),np.max(kxmlarr)])
#ax.set_ylim([2.15,2.30])
ax.set_ylim([np.min(omlist/eV*hbar),np.max(omlist/eV*hbar)])
ax.set_xticks([0, kxmaplist[len(k0Mlist)-1], kxmaplist[len(k0Mlist)+len(kMK1list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)-1], kxmaplist[len(k0Mlist)+len(kMK1list)+len(kK10list)+len(k0K2list)+len(kK2Mlist)-1]])
ax.set_xticklabels(['Γ', 'M', 'K', 'Γ', 'K\'','M'])
f.colorbar(sc)
pdf.savefig(f)
pdf.close()
if scp_dest:
subprocess.run(['scp', pdfout, scp_dest])
if svdout:
subprocess.run(['scp', svdout, scp_dest])
print(time.strftime("%H.%M:%S",time.gmtime(time.time()-begtime)))