qpms/notes/radpower.lyx

804 lines
16 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass article
\use_default_options true
\begin_modules
theorems-ams
\end_modules
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman TeX Gyre Pagella
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts true
\font_sc false
\font_osf true
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format pdf4
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize 10
\spacing single
\use_hyperref true
\pdf_title "Sähköpajan päiväkirja"
\pdf_author "Marek Nečada"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize a4paper
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1cm
\topmargin 5mm
\rightmargin 1cm
\bottommargin 1cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\uoft}[1]{\mathfrak{F}#1}
\end_inset
\begin_inset FormulaMacro
\newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
\end_inset
\begin_inset FormulaMacro
\newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vect}[1]{\mathbf{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ud}{\mathrm{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\basis}[1]{\mathfrak{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\dc}[1]{Ш_{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\rec}[1]{#1^{-1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\recb}[1]{#1^{\widehat{-1}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ints}{\mathbb{Z}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\nats}{\mathbb{N}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\reals}{\mathbb{R}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ush}[2]{Y_{#1,#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\hgfr}{\mathbf{F}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ph}{\mathrm{ph}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\kor}[1]{\underline{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\koru}[1]{\overline{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\hgf}{F}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bra}[1]{\left\langle #1\right|}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ket}[1]{\left|#1\right\rangle }
\end_inset
\begin_inset FormulaMacro
\newcommand{\sci}[1]{\mathfrak{#1}}
\end_inset
\end_layout
\begin_layout Title
Radiation power balance in nanoparticles
\end_layout
\begin_layout Author
Marek Nečada
\end_layout
\begin_layout Abstract
This memo deals with the formulae for radiation transfer, absorption, extinction
for single particle and composite system of several nanoparticles.
I also derive some natural conditions on the
\begin_inset Formula $T$
\end_inset
-matrix elements.
\end_layout
\begin_layout Section*
Conventions
\end_layout
\begin_layout Standard
If not stated otherwise, Kristensson's notation and normalisation conventions
are used in this memo.
That means, among other things, that the
\begin_inset Formula $T$
\end_inset
-matrix is dimensionless and the expansion coefficients of spherical waves
have units of
\begin_inset Formula $\sqrt{\mbox{power}}$
\end_inset
.
\end_layout
\begin_layout Section
Single particle
\end_layout
\begin_layout Subsection
Power transfer formula, absorption
\end_layout
\begin_layout Standard
The power radiated away by a linear scatterer at fixed harmonic frequency
is according to [Kris (2.28)]
\begin_inset Formula
\[
P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)
\]
\end_inset
where
\begin_inset Formula $n$
\end_inset
is a multiindex describing the type (E/M) and multipole degree and order
of the wave,
\begin_inset Formula $f_{n}$
\end_inset
is the coefficient corresponding to
\series bold
outgoing
\series default
(Hankel function based) and
\begin_inset Formula $a_{n}$
\end_inset
to
\series bold
regular
\series default
(first-order Bessel function based) waves.
\end_layout
\begin_layout Standard
This is minus the power absorbed by the nanoparticle, and unless the particle
has some gain mechanism, this cannot be positive.
The basic condition for a physical nanoparticle therefore reads
\begin_inset Formula
\begin{equation}
P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)\le0.\label{eq:Absorption is never negative}
\end{equation}
\end_inset
\end_layout
\begin_layout Subsection
Conditions on the
\begin_inset Formula $T$
\end_inset
-matrix
\end_layout
\begin_layout Standard
For a linear scatterer, the outgoing and regular wave coefficients are connected
via the
\begin_inset Formula $T$
\end_inset
-matrix
\begin_inset Formula
\begin{equation}
f_{n}=\sum_{n'}T_{nn'}a_{n'}.\label{eq:T-matrix definition}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Inequality
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative"
\end_inset
enables us to derive some conditions on the
\begin_inset Formula $T$
\end_inset
-matrix.
Let the particle be driven by a wave of a single type
\begin_inset Formula $m$
\end_inset
only so the coefficients of all other components of the driving field are
zero,
\begin_inset Formula $a_{n}=\delta_{nm}$
\end_inset
.
From
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative"
\end_inset
and
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:T-matrix definition"
\end_inset
we get
\begin_inset Formula
\begin{eqnarray}
P & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}a_{n'}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}a_{n'}a_{n}^{*}\right)\right)\label{eq:Absorption is never negative with T}\\
& = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}\delta_{n'm}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}\delta_{n'm}\delta_{nm}\right)\right)\nonumber \\
& = & \frac{1}{2}\left(\left|\sum_{n}T_{nm}\right|^{2}+\Re T_{mm}\right)\le0\qquad\forall m,\label{eq:Absorption is never negative for single wave type}
\end{eqnarray}
\end_inset
a condition that should be ensured to be true e.g.
for the
\begin_inset Formula $T$
\end_inset
-matrices generated by SCUFF-EM.
\end_layout
\begin_layout Remark
For a particle of spherical symmetry
\begin_inset Formula $T_{nm}\propto\delta_{nm}$
\end_inset
, so
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative for single wave type"
\end_inset
gives
\begin_inset Formula $-\Re T_{mm}\ge\left|T_{mm}\right|^{2}$
\end_inset
which in turn implies
\begin_inset Formula $\left|T_{mm}\right|<1$
\end_inset
.
(Any similar conclusion for the general case?)
\end_layout
\begin_layout Problem
Obviously,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative for single wave type"
\end_inset
is the consequence of the condition
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative"
\end_inset
.
But is
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative"
\end_inset
always true if
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative for single wave type"
\end_inset
satisfied?
\end_layout
\begin_layout Standard
Let me rewrite the expression
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative with T"
\end_inset
(without any assumptions about the values of the coefficients
\begin_inset Formula $a_{n}$
\end_inset
) in Dirac notation where the ket
\begin_inset Formula $\ket a$
\end_inset
is the vector of all the exciting wave coefficients
\begin_inset Formula $a_{n}$
\end_inset
.
Furthemore,
\begin_inset Formula $\ket{e_{m}}$
\end_inset
is the unit vector containing one for the wave indexed by
\begin_inset Formula $m$
\end_inset
and zeros for the rest, so that
\begin_inset Formula $T_{mn}=\bra{e_{m}}T\ket{e_{n}}$
\end_inset
.
The general expression
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative with T"
\end_inset
and condition
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative"
\end_inset
then reads
\begin_inset Formula
\begin{eqnarray}
P & = & \frac{1}{2}\left(\sum_{n}\left|\bra{e_{n}}T\ket a\right|^{2}+\Re\bra aT\ket a\right)\nonumber \\
& = & \frac{1}{2}\left(\sum_{n}\bra aT^{\dagger}\ket{e_{n}}\bra{e_{n}}T\ket a+\frac{1}{2}\left(\bra aT\ket a+\bra aT\ket a^{*}\right)\right)\nonumber \\
& = & \frac{1}{2}\bra aT^{\dagger}T\ket a+\frac{1}{4}\bra a\left(T+T^{\dagger}\right)\ket a\le0\qquad\forall\ket a,\label{eq:Absorption is never negative in Dirac notation}
\end{eqnarray}
\end_inset
giving the following condition on the
\begin_inset Formula $T$
\end_inset
-matrix:
\end_layout
\begin_layout Proposition
A
\begin_inset Formula $T$
\end_inset
-matrix
\begin_inset Formula $T$
\end_inset
is unphysical unless the matrix
\begin_inset Formula
\begin{equation}
W\equiv\frac{T^{\dagger}T}{2}+\frac{T+T^{\dagger}}{4}\label{eq:Definition of the power matrix}
\end{equation}
\end_inset
is negative (semi)definite.
\end_layout
\begin_layout Standard
Obviously, matrix
\begin_inset Formula $W$
\end_inset
is self-adjoint and it has a clear interpretation given by
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative in Dirac notation"
\end_inset
for an exciting field given by its expansion coefficient vector
\begin_inset Formula $\ket a$
\end_inset
,
\begin_inset Formula $-P=-\bra aW\ket a$
\end_inset
is the power absorbed by the scatterer.
\end_layout
\begin_layout Subsection
Lossless scatterer
\end_layout
\begin_layout Standard
Radiation energy conserving scatterer is not very realistic, but it might
provide some simplifications necessary for developing the topological theory.
\end_layout
\begin_layout Standard
A scatterer always conserves the radiation energy iff
\begin_inset Formula $W=0$
\end_inset
, i.e.
iff
\begin_inset Formula
\[
\frac{T^{\dagger}T}{2}+\frac{T+T^{\dagger}}{4}=0.
\]
\end_inset
\end_layout
\begin_layout Subsubsection
Diagonal
\begin_inset Formula $T$
\end_inset
-matrix
\end_layout
\begin_layout Standard
To get some insight into what does this mean, it might be useful to start
with a diagonal
\begin_inset Formula $T$
\end_inset
-matrix,
\begin_inset Formula $T_{mn}=t_{n}\delta_{mn}$
\end_inset
(valid for e.g.
a spherical particle).
Then for the
\begin_inset Formula $m$
\end_inset
-th matrix element we have
\begin_inset Formula
\[
\left(\Re t_{n}\right)^{2}+\left(\Im t_{n}\right)^{2}+\Re t_{n}=0
\]
\end_inset
or
\begin_inset Formula
\[
\left(\Re t_{n}+\frac{1}{2}\right)^{2}+\left(\Im t_{n}\right)^{2}=\left(\frac{1}{2}\right)^{2}
\]
\end_inset
which gives a relation between the real and imaginary parts of the scattering
coefficients.
There are two
\begin_inset Quotes eld
\end_inset
extremal
\begin_inset Quotes erd
\end_inset
real values,
\begin_inset Formula $t_{n}=0$
\end_inset
(no scattering at all) and
\begin_inset Formula $t_{n}=-1$
\end_inset
.
In general, the possible values lie on a half-unit circle in the complex
plane with the centre at
\begin_inset Formula $-1/2$
\end_inset
.
The half-unit disk delimited by the circle is the (realistic) lossy region,
while everything outside it represents (unrealistic) system with gain.
\end_layout
\begin_layout Subsection
Open questions
\end_layout
\begin_layout Subsubsection
How much does the sph.
harm.
degree cutoff affect the eigenvalues of
\begin_inset Formula $W$
\end_inset
?
\end_layout
\begin_layout Standard
When I simulated a cylindrical nanoparticle in scuff-tmatrix (
\begin_inset Formula $l_{\mathrm{max}}=2$
\end_inset
, 50 nm height, 50 nm radius, Palik Ag permittivity) and then with the same
parameters, just with the imaginary part of permittivity set to zero (i.e.
without losses), I got almost the same results, including very similar
eigenvalues of
\begin_inset Formula $W$
\end_inset
(although it should then be basically zero).
This is probably a problem of the BEM method, but it could also be consequence
of the cutoff.
\end_layout
\begin_layout Standard
For comparison, when I tried exact Mie results for a sphere with
\begin_inset Formula $\Im\epsilon=0$
\end_inset
, I got also
\begin_inset Formula $W=0$
\end_inset
(as expected).
But
\begin_inset Formula $T$
\end_inset
-matrix of a sphere is diagonal, hence the cutoff does not affect the eigenvalue
s of resulting (also diagonal)
\begin_inset Formula $W$
\end_inset
-matrix (below the cutoff, of course).
\end_layout
\begin_layout Section
Multiple scattering
\end_layout
\begin_layout Standard
The purpose of this section is to clarify the formulae for absorption and
extinction in a system of multiple scatterers.
Let the scatterers be indexed by fraktur letters, so the power
\begin_inset Quotes eld
\end_inset
generated
\begin_inset Quotes erd
\end_inset
by nanoparticle
\begin_inset Formula $\sci k$
\end_inset
will be denoted as
\begin_inset Formula $P^{\sci k}$
\end_inset
.
Quantities without such indices apply
\begin_inset Note Note
status open
\begin_layout Plain Layout
se vztahují
\end_layout
\end_inset
to the whole system, so
\begin_inset Formula $P$
\end_inset
will now denote the total power generated by the system.
Now
\begin_inset Formula $\ket{a_{0}^{\sci k}}$
\end_inset
is the expansion of the external driving field in the location of nanoparticle
\begin_inset Formula $\sci k$
\end_inset
and
\begin_inset Formula $\ket{a^{\sci k}}$
\end_inset
is the expansion of the external field together with the fields scattered
from other nanoparticles,
\begin_inset Formula
\[
\ket{a^{\sci k}}=\ket{a_{0}^{\sci k}}+\sum_{\sci l\ne\sci k}S_{\sci k\leftarrow\sci l}\ket{f^{\sci l}}.
\]
\end_inset
Rewriting
\begin_inset Formula $\ket{f^{\sci l}}=T^{\sci l}\ket{a^{\sci l}}$
\end_inset
, this gives the scattering problem in terms of
\begin_inset Formula $\ket{a^{\sci k}}$
\end_inset
,
\begin_inset Formula
\[
\ket{a^{\sci k}}=\ket{a_{0}^{\sci k}}+\sum_{\sci l\ne\sci k}S_{\sci k\leftarrow\sci l}T^{\sci l}\ket{a^{\sci l}}
\]
\end_inset
or, in the indexless notation for the whole system
\begin_inset Formula
\begin{eqnarray*}
\ket a & = & \ket{a_{0}}+ST\ket a,\\
\left(1-ST\right)\ket a & = & \ket{a_{0}}
\end{eqnarray*}
\end_inset
Alternatively, multiplication by
\begin_inset Formula $T$
\end_inset
from the left gives the problem in terms of the outgoing wave coefficients,
\begin_inset Formula
\begin{eqnarray*}
\ket f & = & T\ket{a_{0}}+TS\ket f,\\
\left(1-TS\right)\ket f & = & T\ket{a_{0}}.
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
\series bold
TODO
\end_layout
\end_body
\end_document