qpms/qpms/vswf.h

250 lines
11 KiB
C

/*! \file vswf.h
* \brief Vector spherical wavefunctions.
*
* N.B. for the Legendre polynomial norm definitions, see
* <a href="https://www.gnu.org/software/gsl/doc/html/specfunc.html#associated-legendre-polynomials-and-spherical-harmonics">the corresponding section of GSL docs</a>
* or <a href="http://git.savannah.gnu.org/cgit/gsl.git/tree/specfunc/legendre_source.c">gsl/specfunc/legendre_source.c</a>.
*/
#ifndef QPMS_VSWF_H
#define QPMS_VSWF_H
#include <unistd.h> // ssize_t
#include "qpms_types.h"
#include <gsl/gsl_sf_legendre.h>
// -------------- Typedefs (function prototypes) for qpms_vswf_spec_t ----------------------
/// Calculates the (regular VSWF) expansion coefficients of an external incident field.
typedef qpms_errno_t (*qpms_incfield_t)(
/// Target non-NULL array of the regular VSWF expansion coefficients of length bspec->n.
complex double *target,
const qpms_vswf_set_spec_t *bspec,
const cart3_t evalpoint, ///< Point at which the VSWF expansion is made.
const void *args, ///< Pointer to additional function-specific arguments.
bool add ///< If true, add to target; rewrite target if false.
);
// ---------------Methods for qpms_vswf_set_spec_t-----------------------
//
/// Creates a qpms_vswf_set_spec_t structure with an empty list of wave indices.
qpms_vswf_set_spec_t *qpms_vswf_set_spec_init(void);
/// Appends a VSWF index to a \ref qpms_vswf_set_spec_t, also updating metadata.
qpms_errno_t qpms_vswf_set_spec_append(qpms_vswf_set_spec_t *self, qpms_uvswfi_t u);
/// Destroys a \ref qpms_vswf_set_spec_t.
void qpms_vswf_set_spec_free(qpms_vswf_set_spec_t *);
/// Compares two vswf basis specs.
/**
* Checks whether ilist is the same and of the same length.
* If yes, returns true, else returns false.
*/
bool qpms_vswf_set_spec_isidentical(const qpms_vswf_set_spec_t *a,
const qpms_vswf_set_spec_t *b);
/// Copies an instance of qpms_vswf_set_spec_t
qpms_vswf_set_spec_t *qpms_vswf_set_spec_copy(const qpms_vswf_set_spec_t *orig);
/// Creates an instance of qpms_vswf_set_spec_t in the 'traditional' layout.
qpms_vswf_set_spec_t *qpms_vswf_set_spec_from_lMax(qpms_l_t lMax,
qpms_normalisation_t norm);
/// Finds the position of a given index in the bspec's ilist.
/** If not found, returns -1. */
// TODO more consistency in types (here size_t vs. ptrdiff_t).
static inline ssize_t qpms_vswf_set_spec_find_uvswfi(const qpms_vswf_set_spec_t *bspec,
const qpms_uvswfi_t index) {
for(size_t i = 0; i < bspec->n; ++i)
if (bspec->ilist[i] == index)
return i;
return -1;
}
/// Creates an index mapping between two bspecs.
/**
* Creates an array r such that small->ilist[i] == big->ilist[r[i]].
* It's not lossless if the two bspecs contain different combinations of waves.
*
* Preferably, big->ilist contains everything small->ilist does.
* If small->ilist[i] is not found in big->ilist, r[i] will be set to ~(size_t)0.
*
* Discard with free() after use.
*/
size_t *qpms_vswf_set_reindex(const qpms_vswf_set_spec_t *small, const qpms_vswf_set_spec_t *big);
/// Evaluates a set of VSWF basis functions at a given point.
/** The list of basis wave indices is specified in \a setspec;
* \a setspec->norm must be set as well.
*/
qpms_errno_t qpms_uvswf_fill(
csphvec_t *const target, ///< Target array of size at least setspec->n.
const qpms_vswf_set_spec_t *setspec,
csph_t kr, ///< Evaluation point.
qpms_bessel_t btyp);
/// Evaluates field specified by SVWF coefficients at a given point.
/** SVWF coefficients in \a coeffs must be ordered according to \a setspec->ilist.
*/
csphvec_t qpms_eval_uvswf(const qpms_vswf_set_spec_t *setspec,
const complex double *coeffs, ///< SVWF coefficient vector of size setspec->n.
csph_t kr, ///< Evaluation point.
qpms_bessel_t btyp);
// --- qpms_incfield_t instances and their arguments
/// Parameter structure for qpms_incfield_planewave()
typedef struct qpms_incfield_planewave_params_t {
bool use_cartesian; ///< If true, wave direction k and amplitude E are specified in cartesian coordinates (via k.cart, E.cart). If false, k is specified in spherical coordinates and E are specified in the corresponding geographical coordinates (via k.sph, E.sph).
union {
ccart3_t cart;
csph_t sph;
} k; ///< Wave vector.
union {
ccart3_t cart;
csphvec_t sph;
} E; ///< Electric field amplitude at origin.
} qpms_incfield_planewave_params_t;
/// Calculates the (regular VSWF) expansion coefficients of a plane wave.
/** The wave amplitude and wave vector is defined by struct qpms_incfield_planewave_params_t.
*
* If the wave vector and amplitude are not orthogonal (i.e. the plane wave is not
* fully transversal) and bspec->lMaxL is non-negative,
* the corresponding longitudinal components are calculated as well.
*
* For complex k vectors, the implementation is not completely correct right now.
* Locally, it corresponds to decomposition of a plane wave with a real \a k
* (using the real part of the \a k supplied), just the whole decomposition
* is modulated by the origin-dependent factor \f$ \vect E e^{i \vect k \cdot \vect r} \f$
* with \f$ \vect k \f$ complex.
*/
qpms_errno_t qpms_incfield_planewave(
/// Target non-NULL array of the regular VSWF expansion coefficients of length bspec->n.
complex double *target,
const qpms_vswf_set_spec_t *bspec,
const cart3_t evalpoint, ///< Point at which the VSWF expansion is made.
const void *args, ///< Pointer to additional function-specific arguments (converted to (const qpms_incfield_planewave_params_t *)).
bool add ///< If true, add to target; rewrite target if false.
);
// -----------------------------------------------------------------------
/// Electric wave N.
csphvec_t qpms_vswf_single_el(qpms_m_t m, qpms_l_t n, sph_t kdlj,
qpms_bessel_t btyp, qpms_normalisation_t norm);
/// Magnetic wave M.
csphvec_t qpms_vswf_single_mg(qpms_m_t m, qpms_l_t n, sph_t kdlj,
qpms_bessel_t btyp, qpms_normalisation_t norm);
/// Electric wave N, complex wave number version.
csphvec_t qpms_vswf_single_el_csph(qpms_m_t m, qpms_l_t n, csph_t kdlj,
qpms_bessel_t btyp, qpms_normalisation_t norm);
/// Magnetic wave M, complex wave number version..
csphvec_t qpms_vswf_single_mg_csph(qpms_m_t m, qpms_l_t n, csph_t kdlj,
qpms_bessel_t btyp, qpms_normalisation_t norm);
/// Set of electric and magnetic VSWF values in spherical coordinate basis.
/** This is supposed to contain all the waves up to $l = lMax$.
*
* For a completely custom set of waves, use \ref qpms_uvswfset_sph_t instead.
*/
typedef struct qpms_vswfset_sph_t {
//qpms_normalisation_t norm;
qpms_l_t lMax;
//qpms_y_t nelem;
//sph_t kdlj
csphvec_t *el, *mg;
} qpms_vswfset_sph_t;
qpms_errno_t qpms_legendre_deriv_y_get(double **result, double **result_deriv, double x, qpms_l_t lMax,
gsl_sf_legendre_t lnorm, double csphase); // free() result and result_deriv yourself!
qpms_errno_t qpms_legendre_deriv_y_fill(double *where, double *where_deriv, double x,
qpms_l_t lMax, gsl_sf_legendre_t lnorm, double csphase);
/// Evaluate the zeroth-degree longitudinal VSWF \f$ \mathbf{L}_0^0 \f$.
/**
* Any `norm` is being ignored right now.
*/
csphvec_t qpms_vswf_L00(
csph_t kdrj, //< VSWF evaluation point.
qpms_bessel_t btyp,
qpms_normalisation_t norm //< Ignored!
);
/// Evaluate VSWFs at a given point from \a l = 1 up to a given degree \a lMax.
/**
* The target arrays \a resultL, \a resultM, \a resultN have to be large enough to contain
* \a lMax * (\a lMax + 2) elements. If NULL is passed instead, the corresponding SVWF type
* is not evaluated.
*
* Does not evaluate the zeroth-order wave \f$ \mathbf{L}_0^0 \f$.
* If you need that, use qpms_vswf_L00().
*
* If \a kdrj.r == 0 and \a btyp != QPMS_BESSEL_REGULAR, returns QPMS_ESING and fills
* targets with NaNs.
*
* \return 0 (QPMS_SUCCESS) on success, otherwise.
*/
qpms_errno_t qpms_vswf_fill(
csphvec_t *resultL, //< Target array for longitudinal VSWFs.
csphvec_t *resultM, //< Target array for magnetic VSWFs.
csphvec_t *resultN, //< Target array for electric VSWFs.
qpms_l_t lMax, //< Maximum multipole degree to be calculated.
sph_t kdrj, //< VSWF evaluation point.
qpms_bessel_t btyp, qpms_normalisation_t norm);
// Should give the same results: for consistency checks
qpms_errno_t qpms_vswf_fill_alternative(csphvec_t *resultL, csphvec_t *resultM, csphvec_t *resultN, qpms_l_t lMax, sph_t kdrj,
qpms_bessel_t btyp, qpms_normalisation_t norm);
/// Evaluate VSWFs at a given point from \a l = 1 up to a given degree \a lMax (complex \a kr version).
/**
* The target arrays \a resultL, \a resultM, \a resultN have to be large enough to contain
* \a lMax * (\a lMax + 2) elements. If NULL is passed instead, the corresponding SVWF type
* is not evaluated.
*
* Does not evaluate the zeroth-order wave \f$ \mathbf{L}_0^0 \f$.
* If you need that, use qpms_vswf_L00().
*/
qpms_errno_t qpms_vswf_fill_csph(
csphvec_t *resultL, //< Target array for longitudinal VSWFs.
csphvec_t *resultM, //< Target array for magnetic VSWFs.
csphvec_t *resultN, //< Target array for electric VSWFs.
qpms_l_t lMax, //< Maximum multipole degree to be calculated.
csph_t kdrj, //< VSWF evaluation point.
qpms_bessel_t btyp, qpms_normalisation_t norm);
/// Evaluate vector spherical harmonics at \a dir.
/**
* The length of each of the target arrays shall be `lMax * (lMax + 2)`.
* If any of the target arrays pointers is NULL, the corresponding VSH will not be evaluated.
* The "zeroth" radial VSH \f$ \vshrad_0^0 \f$ is not evaluated.
*/
qpms_errno_t qpms_vecspharm_fill(
csphvec_t *const a1target, ///< Target array for radial VSH \f$ \vshrad \f$.
csphvec_t *const a2target, ///< Target array for "rotational" VSH \f$ \vshrot \f$.
csphvec_t *const a3target, ///< Target array for "gradiental" VSH \f$ \vshgrad \f$.
qpms_l_t lMax, sph_t dir, qpms_normalisation_t norm);
qpms_errno_t qpms_vecspharm_dual_fill(csphvec_t *const a1target, csphvec_t *const a2target, csphvec_t *const a3target,
qpms_l_t lMax, sph_t dir, qpms_normalisation_t norm);
qpms_errno_t qpms_planewave2vswf_fill_cart(cart3_t wavedir, ccart3_t amplitude,
complex double *targt_longcoeff, complex double *target_mgcoeff, complex double *target_elcoeff,
qpms_l_t lMax, qpms_normalisation_t norm);
qpms_errno_t qpms_planewave2vswf_fill_sph(sph_t wavedir, csphvec_t amplitude,
complex double *targt_longcoeff, complex double *target_mgcoeff, complex double *target_elcoeff,
qpms_l_t lMax, qpms_normalisation_t norm);
csphvec_t qpms_eval_vswf(sph_t where,
complex double *longcoeffs, complex double *mgcoeffs, complex double *elcoeffs,
qpms_l_t lMax, qpms_bessel_t btyp, qpms_normalisation_t norm);
csphvec_t qpms_eval_vswf_csph(csph_t where,
complex double *longcoeffs, complex double *mgcoeffs, complex double *elcoeffs,
qpms_l_t lMax, qpms_bessel_t btyp, qpms_normalisation_t norm);
qpms_vswfset_sph_t *qpms_vswfset_make(qpms_l_t lMax, sph_t kdlj,
qpms_bessel_t btyp, qpms_normalisation_t norm);//NI
void qpms_vswfset_sph_pfree(qpms_vswfset_sph_t *);//NI
#endif // QPMS_VSWF_H