qpms/qpms/tmatrices.c

1212 lines
44 KiB
C

#define _POSIX_C_SOURCE 200809L // for getline()
#define lapack_int int
#define lapack_complex_double complex double
#define lapack_complex_double_real(z) (creal(z))
#define lapack_complex_double_imag(z) (cimag(z))
#include <lapacke.h>
#include <stdio.h>
#include <stdlib.h>
#include <cblas.h>
#include <unistd.h>
#include "scatsystem.h"
#include "indexing.h"
#include "vswf.h"
#include "groups.h"
#include "symmetries.h"
#include <assert.h>
#include "vectors.h"
#include "quaternions.h"
#include <string.h>
#include "qpms_error.h"
#include "tmatrices.h"
#include "qpms_specfunc.h"
#include "normalisation.h"
#include <errno.h>
#include <pthread.h>
#include <gsl/gsl_integration.h>
#include <gsl/gsl_errno.h>
#include "optim.h"
#include "oshacks.h"
// These are quite arbitrarily chosen constants for the quadrature in qpms_tmatrix_axialsym_fill()
#define TMATRIX_AXIALSYM_INTEGRAL_EPSREL (1e-5)
#define TMATRIX_AXIALSYM_INTEGRAL_EPSABS (1e-8)
#define HBAR (1.05457162825e-34)
#define ELECTRONVOLT (1.602176487e-19)
#define SCUFF_OMEGAUNIT (3e14)
qpms_tmatrix_t *qpms_tmatrix_init(const qpms_vswf_set_spec_t *bspec) {
qpms_tmatrix_t *t;
QPMS_CRASHING_MALLOC(t, sizeof(qpms_tmatrix_t));
t->spec = bspec;
size_t n = bspec->n;
QPMS_CRASHING_CALLOC(t->m, n*n, sizeof(complex double));
t->owns_m = true;
return t;
}
qpms_tmatrix_t *qpms_tmatrix_init_from_generator(
const qpms_vswf_set_spec_t *bspec,
qpms_tmatrix_generator_t gen,
complex double omega) {
qpms_tmatrix_t *t = qpms_tmatrix_init(bspec);
QPMS_ENSURE_SUCCESS(gen.function(t, omega, gen.params));
return t;
}
qpms_tmatrix_t *qpms_tmatrix_copy(const qpms_tmatrix_t *T) {
qpms_tmatrix_t *t = qpms_tmatrix_init(T->spec);
size_t n = T->spec->n;
for(size_t i = 0; i < n*n; ++i)
t->m[i] = T->m[i];
return t;
}
void qpms_tmatrix_free(qpms_tmatrix_t *t){
if(t && t->owns_m) free(t->m);
free(t);
}
qpms_tmatrix_t *qpms_tmatrix_apply_symop_inplace(
qpms_tmatrix_t *T,
const complex double *M
)
{
//qpms_tmatrix_t *t = qpms_tmatrix_init(T->spec);
const size_t n = T->spec->n;
complex double tmp[n][n];
// tmp = M T
const complex double one = 1, zero = 0;
cblas_zgemm(CblasRowMajor,
CblasNoTrans,
CblasNoTrans,
n, n, n, &one, M, n, T->m, n, &zero, tmp, n);
// t->m = tmp M* = M T M*
cblas_zgemm(CblasRowMajor,
CblasNoTrans,
CblasConjTrans,
n, n, n, &one, tmp, n, M, n, &zero, T->m, n);
return T;
}
qpms_tmatrix_t *qpms_tmatrix_apply_symop(
const qpms_tmatrix_t *T,
const complex double *M
)
{
qpms_tmatrix_t *t = qpms_tmatrix_init(T->spec);
const size_t n = T->spec->n;
complex double tmp[n][n];
// tmp = M T
const complex double one = 1, zero = 0;
cblas_zgemm(CblasRowMajor,
CblasNoTrans,
CblasNoTrans,
n, n, n, &one, M, n, T->m, n, &zero, tmp, n);
// t->m = tmp M* = M T M*
cblas_zgemm(CblasRowMajor,
CblasNoTrans,
CblasConjTrans,
n, n, n, &one, tmp, n, M, n, &zero, t->m, n);
return t;
}
qpms_errno_t qpms_symmetrise_tmdata_irot3arr(
complex double *tmdata, const size_t tmcount,
const qpms_vswf_set_spec_t *bspec,
const size_t n_symops, const qpms_irot3_t *symops) {
const size_t n = bspec->n;
qpms_tmatrix_t *tmcopy = qpms_tmatrix_init(bspec);
complex double *symop_matrices = malloc(n*n*sizeof(complex double) * n_symops);
if(!symop_matrices) qpms_pr_error_at_flf(__FILE__, __LINE__, __func__,
"malloc() failed.");
for (size_t i = 0; i < n_symops; ++i)
qpms_irot3_uvswfi_dense(symop_matrices + i*n*n, bspec, symops[i]);
complex double tmp[n][n];
const complex double one = 1, zero = 0;
for (size_t tmi = 0; tmi < tmcount; ++tmi) {
// Move the data in tmcopy; we will then write the sum directly into tmdata.
memcpy(tmcopy->m, tmdata+n*n*tmi, n*n*sizeof(complex double));
memset(tmdata+n*n*tmi, 0, n*n*sizeof(complex double));
for (size_t i = 0; i < n_symops; ++i) {
const complex double *const M = symop_matrices + i*n*n;
// tmp = M T
cblas_zgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
n, n, n, &one, M, n, tmcopy->m, n, &zero, tmp, n);
// tmdata[...] += tmp M* = M T M*
cblas_zgemm(CblasRowMajor, CblasNoTrans, CblasConjTrans,
n, n, n, &one, tmp, n, M, n, &one, tmdata + tmi*n*n, n);
}
for (size_t ii = 0; ii < n*n; ++ii)
tmdata[n*n*tmi+ii] /= n_symops;
}
free(symop_matrices);
qpms_tmatrix_free(tmcopy);
return QPMS_SUCCESS;
}
qpms_errno_t qpms_symmetrise_tmdata_finite_group(
complex double *tmdata, const size_t tmcount,
const qpms_vswf_set_spec_t *bspec,
const qpms_finite_group_t *pointgroup) {
if (!(pointgroup->rep3d)) qpms_pr_error_at_flf(__FILE__, __LINE__, __func__,
"This function requires pointgroup->rep3d to be set correctly!");
return qpms_symmetrise_tmdata_irot3arr(tmdata, tmcount, bspec,
pointgroup->order, pointgroup->rep3d);
}
qpms_tmatrix_t *qpms_tmatrix_symmetrise_irot3arr_inplace(
qpms_tmatrix_t *T,
size_t n_symops,
const qpms_irot3_t *symops
) {
if(qpms_symmetrise_tmdata_irot3arr(T->m, 1,
T->spec, n_symops, symops) != QPMS_SUCCESS)
return NULL;
else return T;
}
qpms_tmatrix_t *qpms_tmatrix_symmetrise_finite_group_inplace(
qpms_tmatrix_t *T,
const qpms_finite_group_t *pointgroup
) {
if(qpms_symmetrise_tmdata_finite_group(T->m, 1,
T->spec, pointgroup) != QPMS_SUCCESS)
return NULL;
else return T;
}
qpms_tmatrix_t *qpms_tmatrix_symmetrise_involution_inplace(
qpms_tmatrix_t *T,
const complex double *M
)
{
qpms_tmatrix_t *t = qpms_tmatrix_apply_symop(T, M);
const size_t n = T->spec->n;
for(size_t i = 0; i < n*n; ++i)
T->m[i] = 0.5 * (t->m[i] + T->m[i]);
qpms_tmatrix_free(t);
return T;
}
qpms_tmatrix_t *qpms_tmatrix_symmetrise_involution(
const qpms_tmatrix_t *T,
const complex double *M
)
{
qpms_tmatrix_t *t = qpms_tmatrix_init(T->spec);
const size_t n = T->spec->n;
complex double tmp[n][n];
// tmp = M T
const complex double one = 1, zero = 0;
cblas_zgemm(CblasRowMajor,
CblasNoTrans,
CblasNoTrans,
n, n, n, &one, M, n, T->m, n, &zero, tmp, n);
// t->m = tmp M* = M T M*
cblas_zgemm(CblasRowMajor,
CblasNoTrans,
CblasConjTrans,
n, n, n, &one, tmp, n, M, n, &zero, t->m, n);
for(size_t i = 0; i < n*n; ++i)
t->m[i] = 0.5 * (t->m[i] + T->m[i]);
return t;
}
qpms_tmatrix_t *qpms_tmatrix_symmetrise_C_inf(const qpms_tmatrix_t *T) {
qpms_tmatrix_t *t = qpms_tmatrix_copy(T);
return qpms_tmatrix_symmetrise_C_inf_inplace(t);
}
qpms_tmatrix_t *qpms_tmatrix_symmetrise_C_inf_inplace(qpms_tmatrix_t *T) {
const size_t n = T->spec->n;
for (size_t row = 0; row < n; row++) {
qpms_m_t rm = qpms_uvswfi2m(T->spec->ilist[row]);
for (size_t col = 0; col < n; col++) {
qpms_m_t cm = qpms_uvswfi2m(T->spec->ilist[col]);
if (rm == cm)
;// No-op // t->m[n*row + col] = T->m[n*row + col];
else
T->m[n*row + col] = 0;
}
}
return T;
}
qpms_tmatrix_t *qpms_tmatrix_symmetrise_C_N(const qpms_tmatrix_t *T, int N) {
qpms_tmatrix_t *t = qpms_tmatrix_copy(T);
return qpms_tmatrix_symmetrise_C_N_inplace(t, N);
}
qpms_tmatrix_t *qpms_tmatrix_symmetrise_C_N_inplace(qpms_tmatrix_t *T, int N) {
const size_t n = T->spec->n;
for (size_t row = 0; row < n; row++) {
qpms_m_t rm = qpms_uvswfi2m(T->spec->ilist[row]);
for (size_t col = 0; col < n; col++) {
qpms_m_t cm = qpms_uvswfi2m(T->spec->ilist[col]);
if (((rm - cm) % N) == 0)
; // T->m[n*row + col] = T->m[n*row + col];
else
T->m[n*row + col] = 0;
}
}
return T;
}
bool qpms_tmatrix_isclose(const qpms_tmatrix_t *A, const qpms_tmatrix_t *B,
const double rtol, const double atol)
{
if (!qpms_vswf_set_spec_isidentical(A->spec, B->spec))
return false;
if (A->m == B->m)
return true;
const size_t n = A->spec->n;
for (size_t i = 0; i < n*n; ++i) {
const double tol = atol + rtol * (cabs(B->m[i]));
if ( cabs(B->m[i] - A->m[i]) > tol )
return false;
}
return true;
}
qpms_tmatrix_interpolator_t *qpms_tmatrix_interpolator_create(const size_t incount,
const double *freqs, const qpms_tmatrix_t *ta, const gsl_interp_type *iptype//, const bool copy_bspec
) {
if (incount <= 0) return NULL;
qpms_tmatrix_interpolator_t *ip = malloc(sizeof(qpms_tmatrix_interpolator_t));
/*
if (copy_bspec) {
ip->bspec = qpms_vswf_set_spec_copy(ta[0].spec);
ip->owns_bspec = true;
}
else {
*/
ip->bspec = ta[0].spec;
// ip->owns_bspec = false;
//}
const size_t n = ip->bspec->n;
// check if all matrices have the same bspec
for (size_t i = 0; i < incount; ++i)
QPMS_ENSURE(qpms_vswf_set_spec_isidentical(ip->bspec, ta[i].spec),
"All T-matrices for interpolation must have the same basis!");
QPMS_CRASHING_CALLOC(ip->splines_real, n*n, sizeof(gsl_spline *));
QPMS_CRASHING_CALLOC(ip->splines_imag, n*n,sizeof(gsl_spline *));
for (size_t row = 0; row < n; ++row)
for (size_t col = 0; col < n; ++col) {
double y_real[incount], y_imag[incount];
bool n0_real = false, n0_imag = false;
for (size_t i = 0; i < incount; ++i) {
complex double telem = ta[i].m[n * row + col];
if ((y_real[i] = creal(telem))) n0_real = true;
if ((y_imag[i] = cimag(telem))) n0_imag = true;
}
if (n0_real) {
gsl_spline *s =
ip->splines_real[n * row + col] = gsl_spline_alloc(iptype, incount);
QPMS_ENSURE_SUCCESS(gsl_spline_init(s, freqs, y_real, incount));
}
else ip->splines_real[n * row + col] = NULL;
if (n0_imag) {
gsl_spline *s =
ip->splines_imag[n * row + col] = gsl_spline_alloc(iptype, incount);
QPMS_ENSURE_SUCCESS(gsl_spline_init(s, freqs, y_imag, incount));
}
else ip->splines_imag[n * row + col] = NULL;
}
return ip;
}
void qpms_tmatrix_interpolator_free(qpms_tmatrix_interpolator_t *ip) {
if (ip) {
const size_t n = ip->bspec->n;
for (size_t i = 0; i < n*n; ++i) {
if (ip->splines_real[i]) gsl_spline_free(ip->splines_real[i]);
if (ip->splines_imag[i]) gsl_spline_free(ip->splines_imag[i]);
}
//if (ip->owns_bspec)
// qpms_vswf_set_spec_free(ip->bspec);
free(ip);
}
}
qpms_tmatrix_t *qpms_tmatrix_interpolator_eval(const qpms_tmatrix_interpolator_t *ip, double freq) {
qpms_tmatrix_t *t = qpms_tmatrix_init(ip->bspec);
QPMS_ENSURE_SUCCESS(qpms_tmatrix_interpolator_eval_fill(t, ip, freq));
return t;
}
qpms_errno_t qpms_tmatrix_interpolator_eval_fill(qpms_tmatrix_t *t,
const qpms_tmatrix_interpolator_t *ip, double freq) {
QPMS_ENSURE(qpms_vswf_set_spec_isidentical(t->spec, ip->bspec), "Tried to fill a T-matrix with an incompatible interpolator!");
const size_t n = ip->bspec->n;
for (size_t i = 0; i < n*n; ++i){
if (ip->splines_real[i]) t->m[i] = gsl_spline_eval(ip->splines_real[i], freq, NULL /*does this work?*/);
if (ip->splines_imag[i]) t->m[i] += I* gsl_spline_eval(ip->splines_imag[i], freq, NULL /*does this work?*/);
}
return QPMS_SUCCESS;
}
qpms_errno_t qpms_tmatrix_generator_interpolator(qpms_tmatrix_t *t,
complex double omega, const void *interp)
{
return qpms_tmatrix_interpolator_eval_fill(t,
(const qpms_tmatrix_interpolator_t *) interp, omega);
}
double qpms_SU2eV(double e_SU) {
return e_SU * SCUFF_OMEGAUNIT / (ELECTRONVOLT / HBAR);
}
double qpms_SU2SI(double e_SU) {
return e_SU * SCUFF_OMEGAUNIT;
}
/// TODO doc and more checks
qpms_errno_t qpms_read_scuff_tmatrix(
FILE *f, ///< file handle
const qpms_vswf_set_spec_t * bs, ///< VSWF set spec
size_t *const n, ///< Number of successfully loaded t-matrices
double* *const freqs, ///< Frequencies in SI units
double* *const freqs_su, ///< Frequencies in SCUFF units (optional)
qpms_tmatrix_t* *const tmatrices_array, ///< The resulting T-matrices (optional).
complex double* *const tmdata
) {
if (!(freqs && n && tmdata))
qpms_pr_error_at_flf(__FILE__, __LINE__, __func__,
"freqs, n, and tmdata are mandatory arguments and must not be NULL.");
if(bs->norm & (QPMS_NORMALISATION_REVERSE_AZIMUTHAL_PHASE
| QPMS_NORMALISATION_SPHARM_REAL))
QPMS_NOT_IMPLEMENTED("Sorry, only standard complex-spherical harmonic based waves are supported right now");
int n_alloc = 128; // First chunk to allocate
*n = 0;
*freqs = malloc(n_alloc * sizeof(double));
if (freqs_su) *freqs_su = malloc(n_alloc * sizeof(double));
*tmdata = malloc(sizeof(complex double) * bs->n * bs->n * n_alloc);
if (!*freqs || (!freqs_su != !*freqs_su) || !*tmdata)
qpms_pr_error_at_flf(__FILE__, __LINE__, __func__,
"malloc() failed.");
size_t linebufsz = 256;
char *linebuf = malloc(linebufsz);
ssize_t readchars;
double lastfreq_su = NAN;
while((readchars = getline(&linebuf, &linebufsz, f)) != -1) {
if (linebuf[0] == '#') continue;
int Alpha, LAlpha, MAlpha, PAlpha, Beta, LBeta, MBeta, PBeta;
double currentfreq_su, tr, ti;
QPMS_ENSURE(11 == sscanf(linebuf, "%lf %d %d %d %d %d %d %d %d %lf %lf",
&currentfreq_su, &Alpha, &LAlpha, &MAlpha, &PAlpha,
&Beta, &LBeta, &MBeta, &PBeta, &tr, &ti),
"Malformed T-matrix file");
if (currentfreq_su != lastfreq_su) { // New frequency -> new T-matrix
++*n;
lastfreq_su = currentfreq_su;
if(*n > n_alloc) {
n_alloc *= 2;
QPMS_CRASHING_REALLOC(*freqs, n_alloc * sizeof(double));
if (freqs_su) {QPMS_CRASHING_REALLOC(*freqs_su, n_alloc * sizeof(double));}
QPMS_CRASHING_REALLOC(*tmdata, sizeof(complex double) * bs->n * bs->n * n_alloc);
}
if (freqs_su) (*freqs_su)[*n-1] = currentfreq_su;
(*freqs)[*n-1] = qpms_SU2SI(currentfreq_su);
for(size_t i = 0; i < bs->n * bs->n; ++i)
(*tmdata)[(*n-1)*bs->n*bs->n + i] = NAN + I*NAN;
}
qpms_vswf_type_t TAlpha, TBeta;
switch(PAlpha) {
case 0: TAlpha = QPMS_VSWF_MAGNETIC; break;
case 1: TAlpha = QPMS_VSWF_ELECTRIC; break;
default: QPMS_WTF;
}
switch(PBeta) {
case 0: TBeta = QPMS_VSWF_MAGNETIC; break;
case 1: TBeta = QPMS_VSWF_ELECTRIC; break;
default: QPMS_WTF;
}
qpms_uvswfi_t srcui = qpms_tmn2uvswfi(TAlpha, MAlpha, LAlpha),
destui = qpms_tmn2uvswfi(TBeta, MBeta, LBeta);
ssize_t srci = qpms_vswf_set_spec_find_uvswfi(bs, srcui),
desti = qpms_vswf_set_spec_find_uvswfi(bs, destui);
if (srci == -1 || desti == -1)
/* This element has not been requested in bs->ilist. */
continue;
else
(*tmdata)[(*n-1)*bs->n*bs->n + desti*bs->n + srci] = (tr + I*ti)
* qpms_normalisation_factor_uvswfi(bs->norm, srcui)
/ qpms_normalisation_factor_uvswfi(bs->norm, destui)
* qpms_normalisation_factor_uvswfi(QPMS_NORMALISATION_CONVENTION_SCUFF, destui)
/ qpms_normalisation_factor_uvswfi(QPMS_NORMALISATION_CONVENTION_SCUFF, srcui);
}
free(linebuf);
// free some more memory
n_alloc = *n;
*freqs = realloc(*freqs, n_alloc * sizeof(double));
if (freqs_su) *freqs_su = realloc(*freqs_su, n_alloc * sizeof(double));
if (tmatrices_array) *tmatrices_array = realloc(*tmatrices_array, n_alloc * sizeof(qpms_tmatrix_t));
*tmdata = realloc(*tmdata, sizeof(complex double) * bs->n * bs->n * n_alloc);
if (!*freqs || (!freqs_su != !*freqs_su) || !*tmdata)
qpms_pr_error_at_flf(__FILE__, __LINE__, __func__,
"realloc() failed.");
if (tmatrices_array) {
*tmatrices_array = malloc(n_alloc * sizeof(qpms_tmatrix_t));
if (!*tmatrices_array)
qpms_pr_error_at_flf(__FILE__, __LINE__, __func__,
"malloc() failed.");
for (size_t i = 0; i < *n; ++i) {
(*tmatrices_array)[i].spec = bs;
(*tmatrices_array)[i].m = (*tmdata) + i * bs->n * bs->n;
(*tmatrices_array)[i].owns_m = false;
}
}
return QPMS_SUCCESS;
}
bool qpms_load_scuff_tmatrix_crash_on_failure = true;
qpms_errno_t qpms_load_scuff_tmatrix(
const char *path, ///< file path
const qpms_vswf_set_spec_t * bs, ///< VSWF set spec
size_t *const n, ///< Number of successfully loaded t-matrices
double **const freqs, ///< Frequencies in SI units
double ** const freqs_su, ///< Frequencies in SCUFF units (optional)
qpms_tmatrix_t ** const tmatrices_array, ///< The resulting T-matrices (optional).
complex double ** const tmdata
) {
FILE *f = fopen(path, "r");
if (!f) {
if (qpms_load_scuff_tmatrix_crash_on_failure) {
QPMS_PR_ERROR("Could not open T-matrix file %s", path);
} else return errno;
}
qpms_errno_t retval =
qpms_read_scuff_tmatrix(f, bs, n, freqs, freqs_su, tmatrices_array, tmdata);
for (size_t i = 0; i < *n * bs->n * bs->n; ++i)
if(isnan(creal((*tmdata)[i])) || isnan(cimag((*tmdata)[i]))) {
QPMS_WARN("Encountered NAN in a loaded T-matrix");
retval |= QPMS_NAN_ENCOUNTERED;
break;
}
if(fclose(f)) { QPMS_PR_ERROR("Could not close the T-matrix file %s "
"(well, that's weird, since it's read only).", path); }
return retval;
}
complex double *qpms_mie_coefficients_reflection(
complex double *target, ///< Target array of length bspec->n. If NULL, a new one will be allocated.
const qpms_vswf_set_spec_t *bspec, ///< Defines which of the coefficients are calculated.
double a, ///< Radius of the sphere.
complex double k_i, ///< Wave number of the internal material of the sphere.
complex double k_e, ///< Wave number of the surrounding medium.
complex double mu_i, ///< Relative permeability of the sphere material.
complex double mu_e, ///< Relative permeability of the surrounding medium.
qpms_bessel_t J_ext,
qpms_bessel_t J_scat
// TODO J_ext, J_scat?
) {
/*
* This implementation pretty much copies mie_coefficients() from qpms_p.py, so
* any bugs there should affect this function as well and perhaps vice versa.
*
* Compared to mie_coefficients() from qpms_p.py, this has opposite sign.
*/
QPMS_ENSURE(J_ext != J_scat, "J_ext and J_scat must not be equal. Perhaps you want J_ext = 1 and J_scat = 3 anyways.");
if (!target) QPMS_CRASHING_MALLOC(target, bspec->n * sizeof(complex double));
qpms_l_t lMax = bspec->lMax;
complex double x_i = k_i * a;
complex double x_e = k_e * a;
// complex double m = k_i / k_e;
complex double eta_inv_i = k_i / mu_i;
complex double eta_inv_e = k_e / mu_e;
complex double zi[lMax + 2];
complex double ze[lMax + 2];
complex double zs[lMax + 2];
complex double RH[lMax + 1] /* MAGNETIC */, RV[lMax+1] /* ELECTRIC */;
QPMS_ENSURE_SUCCESS(qpms_sph_bessel_fill(QPMS_BESSEL_REGULAR, lMax+1, x_i, zi));
QPMS_ENSURE_SUCCESS(qpms_sph_bessel_fill(J_ext, lMax+1, x_e, ze));
QPMS_ENSURE_SUCCESS(qpms_sph_bessel_fill(J_scat, lMax+1, x_e, zs));
for (qpms_l_t l = 0; l <= lMax; ++l) {
// Bessel function derivatives as in DLMF 10.51.2
complex double dzi = -zi[l+1] + l/x_i*zi[l];
complex double dze = -ze[l+1] + l/x_e*ze[l];
complex double dzs = -zs[l+1] + l/x_e*zs[l];
complex double fi = zi[l]/x_i+dzi;
complex double fs = zs[l]/x_e+dzs;
complex double fe = ze[l]/x_e+dze;
RV[l] = (-eta_inv_i * fe * zi[l] + eta_inv_e * ze[l] * fi)/(-eta_inv_e * fi * zs[l] + eta_inv_i * zi[l] * fs);
RH[l] = (-eta_inv_e * fe * zi[l] + eta_inv_i * ze[l] * fi)/(-eta_inv_i * fi * zs[l] + eta_inv_e * zi[l] * fs);
}
for (size_t i = 0; i < bspec->n; ++i) {
qpms_l_t l; qpms_m_t m; qpms_vswf_type_t t;
QPMS_ENSURE_SUCCESS(qpms_uvswfi2tmn(bspec->ilist[i], &t, &m, &l));
assert(l <= lMax);
switch(t) {
case QPMS_VSWF_ELECTRIC:
target[i] = RV[l];
break;
case QPMS_VSWF_MAGNETIC:
target[i] = RH[l];
break;
default: QPMS_WTF;
}
}
return target;
}
/// Replaces the contents of an existing T-matrix with that of a spherical nanoparticle calculated using the Lorentz-mie theory.
qpms_errno_t qpms_tmatrix_spherical_fill(qpms_tmatrix_t *t, ///< T-matrix whose contents are to be replaced. Not NULL.
double a, ///< Radius of the sphere.
complex double k_i, ///< Wave number of the internal material of the sphere.
complex double k_e, ///< Wave number of the surrounding medium.
complex double mu_i, ///< Relative permeability of the sphere material.
complex double mu_e ///< Relative permeability of the surrounding medium.
) {
complex double *miecoeffs = qpms_mie_coefficients_reflection(NULL, t->spec, a, k_i, k_e, mu_i, mu_e,
QPMS_BESSEL_REGULAR, QPMS_HANKEL_PLUS);
memset(t->m, 0, SQ(t->spec->n)*sizeof(complex double));
for(size_t i = 0; i < t->spec->n; ++i)
t->m[t->spec->n*i + i] = miecoeffs[i];
free(miecoeffs);
return QPMS_SUCCESS;
}
qpms_errno_t qpms_tmatrix_generator_sphere(qpms_tmatrix_t *t,
complex double omega, const void *params)
{
const qpms_tmatrix_generator_sphere_param_t *p = params;
qpms_epsmu_t out = p->outside.function(omega, p->outside.params);
qpms_epsmu_t in = p->inside.function(omega, p->inside.params);
return qpms_tmatrix_spherical_fill(t,
p->radius,
qpms_wavenumber(omega, in),
qpms_wavenumber(omega, out),
in.mu, out.mu);
}
/// Convenience function to calculate T-matrix of a non-magnetic spherical \
particle using the permittivity values, replacing existing T-matrix data.
qpms_errno_t qpms_tmatrix_spherical_mu0_fill(
qpms_tmatrix_t *t, ///< T-matrix whose contents are to be replaced. Not NULL.
double a, ///< Radius of the sphere.
double omega, ///< Angular frequency.
complex double epsilon_fg, ///< Permittivity of the sphere.
complex double epsilon_bg ///< Permittivity of the background medium.
)
{
complex double k_i = csqrt(epsilon_fg) * omega / SPEED_OF_LIGHT;
complex double k_e = csqrt(epsilon_bg) * omega / SPEED_OF_LIGHT;
return qpms_tmatrix_spherical_fill(t, a, k_i, k_e, 1, 1);
}
complex double *qpms_apply_tmatrix(
complex double *f, const complex double *a, const qpms_tmatrix_t *T)
{
const size_t n = T->spec->n;
if(!f)
QPMS_CRASHING_CALLOC(f, n, sizeof(complex double));
const complex double one = 1;
const complex double zero = 0;
cblas_zgemv(CblasRowMajor, CblasNoTrans, n, n, &one, T->m, n, a, 1, &zero, f, 1);
return f;
}
qpms_arc_function_retval_t qpms_arc_sphere(double theta, const void *R) {
qpms_arc_function_retval_t retval = {*(const double*)R, 0};
return retval;
}
qpms_arc_function_retval_t qpms_arc_cylinder(double theta, const void *param) {
const qpms_arc_cylinder_params_t *p = param;
double thresh = atan(2 * p->R / p->h);
QPMS_ENSURE(theta >= 0 && theta <= M_PI,
"theta = %g, but it must lie in interval [0, M_PI]", theta);
qpms_arc_function_retval_t res;
if (theta < thresh) {
// Upper base
res.r = 0.5 * p->h / cos(theta);
res.beta = -theta;
} else if (theta <= M_PI - thresh) {
// Side
res.r = p->R / cos(theta - M_PI_2);
res.beta = -theta + M_PI_2;
} else {
// Lower base
res.r = 0.5 * p->h / cos(theta - M_PI);
res.beta = -theta + M_PI;
}
return res;
}
struct tmatrix_axialsym_integral_param_t {
const qpms_vswf_set_spec_t *bspec;
qpms_l_t l, l_in;
qpms_m_t m; // m_in = -m
qpms_vswf_type_t t, t_in;
qpms_arc_function_t f;
complex double k_in, k, z_in, z;
bool realpart; // Otherwise imaginary part
qpms_bessel_t btype; // For Q QPMS_HANKEL_PLUS, for R QPMS_BESSEL_REGULAR
};
static double tmatrix_axialsym_integrand(double theta, void *param) {
// Pretty inefficient; either real or imaginary part is thrown away etc.
struct tmatrix_axialsym_integral_param_t *p = param;
qpms_arc_function_retval_t rb = p->f.function(theta, p->f.params);
csph_t kr = {rb.r * p->k, theta, 0},
kr_in = {rb.r * p->k_in, theta, 0};
csphvec_t y_el = qpms_vswf_single_el_csph(p->m, p->l, kr, p->btype, p->bspec->norm);
csphvec_t y_mg = qpms_vswf_single_mg_csph(p->m, p->l, kr, p->btype, p->bspec->norm);
csphvec_t v_in_el = qpms_vswf_single_el_csph(-p->m, p->l_in, kr_in, QPMS_BESSEL_REGULAR, p->bspec->norm);
csphvec_t v_in_mg = qpms_vswf_single_mg_csph(-p->m, p->l_in, kr_in, QPMS_BESSEL_REGULAR, p->bspec->norm);
csphvec_t y1, y2, v_in1, v_in2;
switch(p->t) {
case QPMS_VSWF_ELECTRIC: y1 = y_el; y2 = y_mg; break;
case QPMS_VSWF_MAGNETIC: y1 = y_mg; y2 = y_el; break;
default: QPMS_WTF;
}
switch(p->t_in) {
case QPMS_VSWF_ELECTRIC: v_in1 = v_in_mg; v_in2 = v_in_el; break;
case QPMS_VSWF_MAGNETIC: v_in1 = v_in_el; v_in2 = v_in_mg; break;
default: QPMS_WTF;
}
// Normal vector components
double nrc = cos(rb.beta), nthetac = sin(rb.beta);
// First triple product
complex double tp1 = nrc * (y1.thetac * v_in1.phic - y1.phic * v_in1.thetac)
+ nthetac * (y1.phic * v_in1.rc - y1.rc * v_in1.phic);
// Second thiple product
complex double tp2 = nrc * (y2.thetac * v_in2.phic - y2.phic * v_in2.thetac)
+ nthetac * (y2.phic * v_in2.rc - y2.rc * v_in2.phic);
double jac = SQ(rb.r) * sin(theta) / nrc; // Jacobian
complex double res = jac * (p->z/p->z_in * tp1 + tp2);
return p->realpart ? creal(res) : cimag(res);
}
long qpms_axsym_tmatrix_integration_nthreads_default = 4;
long qpms_axsym_tmatrix_integration_nthreads_override = 0;
void qpms_axsym_tmatrix_integration_set_nthreads(long n) {
qpms_axsym_tmatrix_integration_nthreads_override = n;
}
struct qpms_tmatrix_axialsym_fill_integration_thread_arg {
complex double *Q, *R;
const qpms_vswf_set_spec_t *bspecQR;
double epsrel, epsabs;
size_t intlimit;
qpms_arc_function_t f;
const struct tmatrix_axialsym_integral_param_t *p_template; // Thread must copy this and set its own realpart and btype fields.
size_t *i2start_ptr;
pthread_mutex_t *i2start_mutex;
};
// This wrapper retries to calculate the T-matrix integral and if it fails, reduces torelance.
static inline int axint_wrapper(const gsl_function *f, double epsabs, double epsrel,
size_t intlimit, gsl_integration_workspace *w, double *result, double *abserr) {
static int tol_exceeded = 0;
double errfac;
int retval;
for (errfac = 1; epsabs*errfac < 0.01 && epsrel*errfac < 0.01; errfac *= 8) {
retval = gsl_integration_qag(f, 0, M_PI, epsabs*errfac, epsrel*errfac,
intlimit, 2, w, result, abserr);
if(QPMS_LIKELY(!retval)) {
if(QPMS_LIKELY(errfac == 1))
return 0;
else {
QPMS_DEBUG(QPMS_DBGMSG_INTEGRATION,
"T-matrix quadrature succeeded only after %g-fold"
"tolerance reduction."); // TODO more details here?
return GSL_EROUND;
}
}
else if(retval == GSL_EROUND) {
if (!tol_exceeded) {
QPMS_WARN("T-matrix quadrature failed; retrying with worse tolerances."
" (this warning will be shown only once).");
}
tol_exceeded += 1;
}
else QPMS_ENSURE_SUCCESS(retval);
}
QPMS_PR_ERROR("T-matrix quadrature failed even after harsh tolerance reduction.");
}
static void * qpms_tmatrix_axialsym_fill_integration_thread(void *arg) {
const struct qpms_tmatrix_axialsym_fill_integration_thread_arg *a = arg;
struct tmatrix_axialsym_integral_param_t p = *a->p_template;
const gsl_function f = {tmatrix_axialsym_integrand, (void *) &p};
gsl_integration_workspace *w = gsl_integration_workspace_alloc(a->intlimit);
while(1) {
QPMS_ENSURE_SUCCESS(pthread_mutex_lock(a->i2start_mutex));
if(*(a->i2start_ptr) >= a->bspecQR->n) {// Everything already done, leave thread
QPMS_ENSURE_SUCCESS(pthread_mutex_unlock(a->i2start_mutex));
break;
}
const size_t i2 = *(a->i2start_ptr);
++*(a->i2start_ptr);
QPMS_ENSURE_SUCCESS(pthread_mutex_unlock(a->i2start_mutex));
for(size_t i1 = 0; i1 < a->bspecQR->n; ++i1) {
// NOTE that the Q', R' matrices are !TRANSPOSED! here because of zgetrs
const size_t iQR = i1 + i2 * a->bspecQR->n;
qpms_m_t m1, m2;
qpms_l_t l1, l2;
qpms_vswf_type_t t1, t2;
const qpms_uvswfi_t u1 = a->bspecQR->ilist[i1], u2 = a->bspecQR->ilist[i2];
QPMS_ENSURE_SUCCESS(qpms_uvswfi2tmn(u1, &t1, &m1, &l1));
QPMS_ENSURE_SUCCESS(qpms_uvswfi2tmn(u2, &t2, &m2, &l2));
if (m1 + m2) {
a->Q[iQR] = 0;
a->R[iQR] = 0;
} else {
p.m = m1;
p.l = l1; p.l_in = l2;
p.t = t1; p.t_in = t2;
double result;
double abserr; // gsl_integration_qag() needs this; thrown away for now
// Re(R')
p.btype = QPMS_BESSEL_REGULAR;
p.realpart = true;
axint_wrapper(&f, a->epsabs, a->epsrel, a->intlimit, w, &result, &abserr);
a->R[iQR] = result;
// Im(R')
p.realpart = false;
axint_wrapper(&f, a->epsabs, a->epsrel, a->intlimit, w, &result, &abserr);
a->R[iQR] += I*result;
// Re(Q')
p.btype = QPMS_HANKEL_PLUS;
p.realpart = true;
axint_wrapper(&f, a->epsabs, a->epsrel, a->intlimit, w, &result, &abserr);
a->Q[iQR] = result;
// Im(Q')
p.realpart = false;
axint_wrapper(&f, a->epsabs, a->epsrel, a->intlimit, w, &result, &abserr);
a->Q[iQR] += I*result;
}
}
}
gsl_integration_workspace_free(w);
}
qpms_errno_t qpms_tmatrix_axialsym_fill(
qpms_tmatrix_t *t, complex double omega, qpms_epsmu_t outside,
qpms_epsmu_t inside,qpms_arc_function_t shape, qpms_l_t lMaxQR)
{
QPMS_UNTESTED; // TODO also check whether this is valid for all norms.
const qpms_vswf_set_spec_t *bspec = t->spec;
struct tmatrix_axialsym_integral_param_t p;
p.k = qpms_wavenumber(omega, outside);
p.k_in = qpms_wavenumber(omega, inside);
p.z = qpms_waveimpedance(outside);
p.z_in = qpms_waveimpedance(inside);
p.f = shape;
p.bspec = bspec;
if (lMaxQR < bspec->lMax) lMaxQR = bspec->lMax;
qpms_vswf_set_spec_t *bspecQR = qpms_vswf_set_spec_from_lMax(lMaxQR, bspec->norm);
size_t *reindex = qpms_vswf_set_reindex(bspec, bspecQR);
// Q' and R' matrices
complex double *Q, *R;
QPMS_CRASHING_MALLOC(Q, sizeof(complex double) * SQ(bspecQR->n));
QPMS_CRASHING_MALLOC(R, sizeof(complex double) * SQ(bspecQR->n));
// Not sure what the size should be, but this should be more than enough.
const size_t intlimit = 1024;
const double epsrel = TMATRIX_AXIALSYM_INTEGRAL_EPSREL;
const double epsabs = TMATRIX_AXIALSYM_INTEGRAL_EPSABS;
//==== multi-threaded integration begin
size_t i2start = 0;
pthread_mutex_t i2start_mutex;
QPMS_ENSURE_SUCCESS(pthread_mutex_init(&i2start_mutex, NULL));
const struct qpms_tmatrix_axialsym_fill_integration_thread_arg
arg = {Q, R, bspecQR, epsrel, epsabs, intlimit, shape, &p, &i2start, &i2start_mutex};
// FIXME THIS IS NOT PORTABLE (_SC_NPROCESSORS_ONLN is not a standard POSIX thing)
long nthreads;
if (qpms_axsym_tmatrix_integration_nthreads_override > 0) {
nthreads = qpms_axsym_tmatrix_integration_nthreads_override;
QPMS_DEBUG(QPMS_DBGMSG_THREADS, "Using overriding value of %ld thread(s).",
nthreads);
} else {
nthreads = get_ncpus();
if (nthreads < 1) {
QPMS_DEBUG(QPMS_DBGMSG_THREADS, "_SC_NPROCESSORS_ONLN returned %ld, using %ld thread(s) instead.",
nthreads, qpms_axsym_tmatrix_integration_nthreads_default);
nthreads = qpms_axsym_tmatrix_integration_nthreads_default;
} else {
QPMS_DEBUG(QPMS_DBGMSG_THREADS, "_SC_NRPOCESSORS_ONLN returned %ld.", nthreads);
}
}
nthreads = MIN(nthreads, bspec->n); // don't make redundant threads
pthread_t thread_ids[nthreads];
for(long thi = 0; thi < nthreads; ++thi)
QPMS_ENSURE_SUCCESS(pthread_create(thread_ids + thi, NULL,
qpms_tmatrix_axialsym_fill_integration_thread,
(void *) &arg));
for(long thi = 0; thi < nthreads; ++thi) {
void *retval;
QPMS_ENSURE_SUCCESS(pthread_join(thread_ids[thi], &retval));
}
QPMS_ENSURE_SUCCESS(pthread_mutex_destroy(&i2start_mutex));
//===== multi-threaded integration end
// Compute T-matrix; maybe it would be better solved with some sparse matrix mechanism,
// but fukkit.
const size_t n = bspecQR->n;
lapack_int *pivot;
QPMS_CRASHING_MALLOC(pivot, sizeof(lapack_int) * n);
QPMS_ENSURE_SUCCESS(LAPACKE_zgetrf(LAPACK_ROW_MAJOR, n, n, Q, n, pivot));
// Solve Q'^T X = R'^T where X will be -T^T
// Note that Q'^T, R'^T are already (transposed) in Q, R.
QPMS_ENSURE_SUCCESS(LAPACKE_zgetrs(LAPACK_ROW_MAJOR, 'N', n, n /*nrhs*/,
Q, n, pivot, R, n));
// R now contains -T^T.
for(size_t i1 = 0; i1 < bspec->n; ++i1)
for(size_t i2 = 0; i2 < bspec->n; ++i2) {
if (reindex[i1] == ~(size_t) 0 && reindex[i2] == ~(size_t) 0) QPMS_WTF;
const size_t it = i1 * bspec->n + i2;
const size_t iQR = reindex[i1] + reindex[i2] * bspecQR->n;
t->m[it] = -R[iQR];
}
free(pivot); free(R); free(Q); free(reindex);
qpms_vswf_set_spec_free(bspecQR);
return QPMS_SUCCESS;
}
qpms_errno_t qpms_tmatrix_axialsym_RQ_transposed_fill(complex double *target,
complex double omega, qpms_epsmu_t outside, qpms_epsmu_t inside,
qpms_arc_function_t shape, qpms_l_t lMaxQR, qpms_normalisation_t norm,qpms_bessel_t J)
{
QPMS_UNTESTED; // TODO also check whether this is valid for all norms.
struct tmatrix_axialsym_integral_param_t p;
qpms_vswf_set_spec_t *bspecQR = qpms_vswf_set_spec_from_lMax(lMaxQR, norm);
p.k = qpms_wavenumber(omega, outside);
p.k_in = qpms_wavenumber(omega, inside);
p.z = qpms_waveimpedance(outside);
p.z_in = qpms_waveimpedance(inside);
p.f = shape;
p.bspec = bspecQR;
p.btype = J;
const gsl_function f = {tmatrix_axialsym_integrand, (void *) &p};
// Not sure what the size should be, but this should be more than enough.
const size_t intlimit = 1024;
const double epsrel = TMATRIX_AXIALSYM_INTEGRAL_EPSREL;
const double epsabs = TMATRIX_AXIALSYM_INTEGRAL_EPSABS;
gsl_integration_workspace *w = gsl_integration_workspace_alloc(intlimit);
for(size_t i1 = 0; i1 < bspecQR->n; ++i1)
for(size_t i2 = 0; i2 < bspecQR->n; ++i2) {
// NOTE that the Q', R' matrices are !TRANSPOSED! here because of zgetrs
const size_t iQR = i1 + i2 * bspecQR->n;
qpms_m_t m1, m2;
qpms_l_t l1, l2;
qpms_vswf_type_t t1, t2;
const qpms_uvswfi_t u1 = bspecQR->ilist[i1], u2 = bspecQR->ilist[i2];
QPMS_ENSURE_SUCCESS(qpms_uvswfi2tmn(u1, &t1, &m1, &l1));
QPMS_ENSURE_SUCCESS(qpms_uvswfi2tmn(u2, &t2, &m2, &l2));
if (m1 + m2) {
target[iQR] = 0;
} else {
p.m = m1;
p.l = l1; p.l_in = l2;
p.t = t1; p.t_in = t2;
double result;
double abserr; // gsl_integration_qag() needs this; thrown away for now
// Re(R' or Q')
p.realpart = true;
QPMS_ENSURE_SUCCESS(gsl_integration_qag(&f, 0, M_PI, epsabs, epsrel,
intlimit, 2, w, &result, &abserr));
target[iQR] = result;
// Im(R' or Q')
p.realpart = false;
QPMS_ENSURE_SUCCESS(gsl_integration_qag(&f, 0, M_PI, epsabs, epsrel,
intlimit, 2, w, &result, &abserr));
target[iQR] += I*result;
}
}
gsl_integration_workspace_free(w);
qpms_vswf_set_spec_free(bspecQR);
return QPMS_SUCCESS;
}
qpms_errno_t qpms_tmatrix_generator_axialsym_RQ_transposed_fill(complex double *target,
complex double omega, const qpms_tmatrix_generator_axialsym_param_t *param,
qpms_normalisation_t norm, qpms_bessel_t J)
{
const qpms_tmatrix_generator_axialsym_param_t *p = param;
return qpms_tmatrix_axialsym_RQ_transposed_fill(target, omega,
p->outside.function(omega, p->outside.params),
p->inside.function(omega, p->inside.params),
p->shape,
p->lMax_extend, norm, J);
}
qpms_errno_t qpms_tmatrix_generator_axialsym(qpms_tmatrix_t *t, complex double omega, const void *param)
{
const qpms_tmatrix_generator_axialsym_param_t *p = param;
return qpms_tmatrix_axialsym_fill(t, omega,
p->outside.function(omega, p->outside.params),
p->inside.function(omega, p->inside.params),
p->shape,
p->lMax_extend);
}
qpms_errno_t qpms_tmatrix_generator_constant(qpms_tmatrix_t *t,
complex double omega, const void *tmorig) {
QPMS_UNTESTED;
// TODO more thorough check on bspec!
const qpms_tmatrix_t *orig = tmorig;
const size_t tocopy = SQ(MIN(t->spec->n, orig->spec->n));
memcpy(t->m, orig->m, tocopy*sizeof(complex double));
memset(t->m+tocopy, 0, (SQ(t->spec->n)-tocopy)*sizeof(complex double));
return QPMS_SUCCESS;
}
void qpms_tmatrix_operation_clear(qpms_tmatrix_operation_t *f) {
switch(f->typ) {
case QPMS_TMATRIX_OPERATION_NOOP:
break;
case QPMS_TMATRIX_OPERATION_LRMATRIX:
if(f->op.lrmatrix.owns_m)
free(f->op.lrmatrix.m);
break;
case QPMS_TMATRIX_OPERATION_SCMULZ:
if(f->op.scmulz.owns_m)
free(f->op.scmulz.m);
break;
case QPMS_TMATRIX_OPERATION_IROT3:
break;
case QPMS_TMATRIX_OPERATION_IROT3ARR:
if(f->op.irot3arr.owns_ops)
free(f->op.irot3arr.ops);
break;
case QPMS_TMATRIX_OPERATION_FINITE_GROUP_SYMMETRISE: // Group never owned
break;
case QPMS_TMATRIX_OPERATION_COMPOSE_SUM:
{
struct qpms_tmatrix_operation_compose_sum * const o =
&(f->op.compose_sum);
if(o->opmem) {
for(size_t i = 0; i < o->n; ++i)
qpms_tmatrix_operation_clear(&(o->opmem[i]));
free(o->opmem);
}
free(o->ops);
}
break;
case QPMS_TMATRIX_OPERATION_COMPOSE_CHAIN:
{
struct qpms_tmatrix_operation_compose_chain * const o =
&(f->op.compose_chain);
if(o->opmem) {
for(size_t i = 0; i < o->n; ++i)
if(o->ops_owned[i]) {
// A bit complicated yet imperfect sanity/bound check,
// but this way we at least get rid of the const discard warning.
ptrdiff_t d = o->ops[i] - o->opmem;
QPMS_ENSURE(d >= 0 && d < o->opmem_size,
"Bound check failed; is there a bug in the"
" construction of compose_chain operation?\n"
"opmem_size = %zu, o->ops[%zu] - o->opmem = %td.",
o->opmem_size, i, d);
qpms_tmatrix_operation_clear(o->opmem + d);
}
free(o->opmem);
free(o->ops_owned);
}
free(o->ops);
}
break;
default:
QPMS_WTF;
}
}
void qpms_tmatrix_operation_copy(qpms_tmatrix_operation_t *dest, const qpms_tmatrix_operation_t *src) {
memcpy(dest, src, sizeof(qpms_tmatrix_operation_t));
switch(dest->typ) {
case QPMS_TMATRIX_OPERATION_NOOP:
break;
case QPMS_TMATRIX_OPERATION_LRMATRIX:
QPMS_CRASHING_MALLOCPY(dest->op.lrmatrix.m, src->op.lrmatrix.m,
sizeof(complex double) * src->op.lrmatrix.m_size);
dest->op.lrmatrix.owns_m = true;
break;
case QPMS_TMATRIX_OPERATION_SCMULZ:
QPMS_CRASHING_MALLOCPY(dest->op.scmulz.m, src->op.scmulz.m,
sizeof(complex double) * src->op.scmulz.m_size);
dest->op.scmulz.owns_m = true;
break;
case QPMS_TMATRIX_OPERATION_IROT3:
break;
case QPMS_TMATRIX_OPERATION_IROT3ARR:
QPMS_CRASHING_MALLOCPY(dest->op.irot3arr.ops, src->op.irot3arr.ops,
src->op.irot3arr.n * sizeof(qpms_irot3_t));
dest->op.irot3arr.owns_ops = true;
break;
case QPMS_TMATRIX_OPERATION_FINITE_GROUP_SYMMETRISE: // Group never owned
break;
case QPMS_TMATRIX_OPERATION_COMPOSE_SUM:
{
struct qpms_tmatrix_operation_compose_sum * const o =
&(dest->op.compose_sum);
QPMS_CRASHING_MALLOC(o->ops, o->n * sizeof(*(o->ops)));
QPMS_CRASHING_MALLOC(o->opmem, o->n * sizeof(*(o->opmem)));
for(size_t i = 0; i < o->n; ++i) {
qpms_tmatrix_operation_copy(o->opmem + i, src->op.compose_sum.ops[i]);
o->ops[i] = o->opmem + i;
}
}
break;
case QPMS_TMATRIX_OPERATION_COMPOSE_CHAIN:
{
struct qpms_tmatrix_operation_compose_chain * const o =
&(dest->op.compose_chain);
QPMS_CRASHING_MALLOC(o->ops, o->n * sizeof(*(o->ops)));
QPMS_CRASHING_MALLOC(o->ops_owned, o->n * sizeof(*(o->ops_owned)));
QPMS_CRASHING_MALLOC(o->opmem, o->n * sizeof(*(o->opmem)));
for(size_t i = 0; i < o->n; ++i) {
qpms_tmatrix_operation_copy(o->opmem + i, src->op.compose_chain.ops[i]);
o->ops[i] = o->opmem + i;
o->ops_owned[i] = true;
}
}
break;
default:
QPMS_WTF;
}
dest->typ = src->typ;
}
void qpms_tmatrix_operation_compose_chain_init(qpms_tmatrix_operation_t *dest,
size_t nops, size_t opmem_size) {
if (nops == 0) {
QPMS_WARN("Tried to create a composed (chain) operation of zero size;"
"setting to no-op instead.");
*dest = qpms_tmatrix_operation_noop;
}
if (nops < opmem_size)
QPMS_WARN("Allocating buffer for %zu operations, in a chained operation of"
" only %zu elemens, that does not seem to make sense.", opmem_size, nops);
dest->typ = QPMS_TMATRIX_OPERATION_COMPOSE_CHAIN;
struct qpms_tmatrix_operation_compose_chain * const o =
&(dest->op.compose_chain);
o->n = nops;
QPMS_CRASHING_MALLOC(o->ops, nops * sizeof(*(o->ops)));
if (opmem_size != 0) {
QPMS_CRASHING_CALLOC(o->ops_owned, o->n, sizeof(_Bool));
QPMS_CRASHING_MALLOC(o->opmem, opmem_size * sizeof(*(o->opmem)));
} else {
o->ops_owned = NULL;
o->opmem = NULL;
}
o->opmem_size = opmem_size;
}
qpms_tmatrix_t *qpms_tmatrix_mv(qpms_tmatrix_t *dest,
const qpms_tmatrix_t *orig) {
QPMS_ENSURE(qpms_vswf_set_spec_isidentical(dest->spec, orig->spec),
"Basis specifications must be identical!");
memcpy(dest->m, orig->m, SQ(orig->spec->n)*sizeof(complex double));
return dest;
}
qpms_tmatrix_t *qpms_tmatrix_apply_operation_replace(qpms_tmatrix_t *dest,
const qpms_tmatrix_operation_t *op, const qpms_tmatrix_t *orig) {
//QPMS_ENSURE(qpms_vswf_set_spec_isidentical(dest->spec, orig->spec),
// "Basis specifications must be identical!");
// TODO should I check also for dest->owns_m?
// FIXME this is highly inoptimal; the hierarchy should be such
// that _operation() and operation_inplace() call this, and not the
// other way around
qpms_tmatrix_mv(dest, orig);
return qpms_tmatrix_apply_operation_inplace(op, dest);
}
qpms_tmatrix_t *qpms_tmatrix_apply_operation(
const qpms_tmatrix_operation_t *f, const qpms_tmatrix_t *orig) {
// Certain operations could be optimized, but the effect would be marginal.
qpms_tmatrix_t *res = qpms_tmatrix_copy(orig);
return qpms_tmatrix_apply_operation_inplace(f, res);
}
static qpms_tmatrix_t *qtao_compose_sum_inplace(qpms_tmatrix_t *T,
const struct qpms_tmatrix_operation_compose_sum *cs) {
qpms_tmatrix_t *tmp_target = qpms_tmatrix_init(T->spec);
qpms_tmatrix_t *sum = qpms_tmatrix_init(T->spec);
for (size_t i = 0; i < cs->n; ++i) {
memcpy(tmp_target->m, T->m, SQ(T->spec->n) * sizeof(complex double));
QPMS_ENSURE(qpms_tmatrix_apply_operation_inplace(cs->ops[i] , tmp_target),
"Got NULL pointer from qpms_tmatrix_apply_operation_inplace, hupsis!");
for (size_t j = 0; j < SQ(T->spec->n); ++j)
sum->m[j] += tmp_target->m[j];
}
for(size_t j = 0; j < SQ(T->spec->n); ++j)
T->m[j] = sum->m[j] * cs->factor;
qpms_tmatrix_free(sum);
qpms_tmatrix_free(tmp_target);
return T;
}
static qpms_tmatrix_t *qtao_compose_chain_inplace(qpms_tmatrix_t *T,
const struct qpms_tmatrix_operation_compose_chain *cc) {
for(size_t i = 0; i < cc->n; ++i)
qpms_tmatrix_apply_operation_inplace(cc->ops[i], T);
return T;
}
static qpms_tmatrix_t *qtao_scmulz_inplace(qpms_tmatrix_t *T,
const struct qpms_tmatrix_operation_scmulz *s) {
for(size_t i = 0; i < SQ(T->spec->n); ++i)
T->m[i] *= s->m[i];
return T;
}
qpms_tmatrix_t *qpms_tmatrix_apply_operation_inplace(
const qpms_tmatrix_operation_t *f, qpms_tmatrix_t *T) {
switch(f->typ) {
case QPMS_TMATRIX_OPERATION_NOOP:
return T;
case QPMS_TMATRIX_OPERATION_LRMATRIX:
return qpms_tmatrix_apply_symop_inplace(T, f->op.lrmatrix.m);
case QPMS_TMATRIX_OPERATION_IROT3:
return qpms_tmatrix_symmetrise_irot3arr_inplace(T, 1, &(f->op.irot3));
case QPMS_TMATRIX_OPERATION_FINITE_GROUP_SYMMETRISE:
return qpms_tmatrix_symmetrise_finite_group_inplace(T, f->op.finite_group);
case QPMS_TMATRIX_OPERATION_COMPOSE_SUM:
return qtao_compose_sum_inplace(T, &(f->op.compose_sum));
case QPMS_TMATRIX_OPERATION_COMPOSE_CHAIN:
return qtao_compose_chain_inplace(T, &(f->op.compose_chain));
case QPMS_TMATRIX_OPERATION_SCMULZ:
return qtao_scmulz_inplace(T, &(f->op.scmulz));
default:
QPMS_WTF;
}
}