qpms/qpms/lattices.h

942 lines
32 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*! \file lattices.h
* \brief Lattice point generators and lattice vector analysis / transformation.
*
* \bug Header file not C++ compatible.
*/
#ifndef LATTICES_H
#define LATTICES_H
#ifdef __cplusplus // FIXME Not C++ compatible. Include "lattices_types.h" for minimal necessary enum decls.
extern "C" {
#endif
#include "lattices_types.h"
#include <math.h>
#include <stdbool.h>
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
#ifndef M_SQRT3
#define M_SQRT3 1.7320508075688772935274463415058724
#endif
#ifndef M_SQRT3_2
#define M_SQRT3_2 (M_SQRT3/2)
#endif
#ifndef M_1_SQRT3
#define M_1_SQRT3 0.57735026918962576450914878050195746
#endif
/* IMPORTANT TODO
* ==============
*
* The current content of this part (and the implementation) is extremely ugly.
* When I have some time, I have to rewrite this in the style of lattices2d.py
*
*/
inline static bool LatticeDimensionality_checkflags(
LatticeDimensionality a, LatticeDimensionality flags_a_has_to_contain) {
return ((a & flags_a_has_to_contain) == flags_a_has_to_contain);
}
// fuck, I already had had suitable type
#include "vectors.h"
typedef cart2_t point2d;
static inline point2d point2d_fromxy(const double x, const double y) {
point2d p;
p.x = x;
p.y = y;
return p;
}
/// Lattice basis reduction.
/** This is currenty a bit naïve implementation of
* Lenstra-Lenstra-Lovász algorithm.
*
* The reduction happens in-place, i.e. the basis vectors in \a b are
* replaced with the reduced basis.
*/
int qpms_reduce_lattice_basis(double *b, ///< Array of dimension [bsize][ndim].
const size_t bsize, ///< Number of the basis vectors (dimensionality of the lattice).
const size_t ndim, ///< Dimension of the space into which the lattice is embedded.
/// Lovász condition parameter \f$ \delta \f$.
/** Polynomial time complexity guaranteed for \f$\delta \in (1/4,1)\f$.
*/
double delta
);
/// Generic lattice point generator type.
/**
* A bit of OOP-in-C brainfuck here.
*
* The basic principle of operation is following:
* Instead of a list (array) of points, an initialized PGen object
* is passed to a function that does something over a set of points.
* Each time PGen-type object is "called" (more specifically, one of
* the "methods" specified in the PGenClassInfo structure in @ref c,
* it returns PGenReturnData
* which contains a point in given coordinates (depending on the generator
* class) and some metadata.
*
* After the last generated point, the generator frees all internal memory
* and returns PGenSphReturnData with PGEN_NOTDONE flag unset (the rest
* shall be considered invalid data).
* The caller can also decide not to use the rest and end getting the points
* even when the PGEN_NOTDONE was set in the last returned data.
* In such case, the caller shall call PGen_destroy() manually.
*
* Methods
* -------
*
* The standard wrapper "methods" to generate a single point in a given
* coordinate system are
*
* * PGen_next_z(),
* * PGen_next_cart2(),
* * PGen_next_cart3(),
* * PGen_next_pol(),
* * PGen_next_sph().
*
* Memory management policy
* ------------------------
*
* The basic PGen structure shall be allocated on stack (it's only two pointers),
* everything internal goes on heap.
*/
typedef struct PGen {
/// Pointer to the "class" metadata defining the behaviour of the generator.
const struct PGenClassInfo * /*const*/ c;
/// Pointer to internal state data; shall be NULL if invalid (destroyed);
void *stateData;
} PGen;
typedef enum PGenPointFlags {
/** The most important flag: when this is not set, the
* interation ended other data returned should be
* considered nonsense and at this point, the generator
* should have de-allocated all internal memory.
*/
PGEN_NOTDONE = 2,
/** Set if the r-coordinate is not different than in the
* previous generated point (so radial parts of the
* calculation have to be redone).
* Optional.
*/
PGEN_OLD_R = 1,
/** Set if the r-coordinate has not changed between the
* first and the last point generated in the current
* call.
* Only for the bulk generator methods.
* Optional.
*/
PGEN_SINGLE_R = 16,
PGEN_AT_Z = 4, ///< Set if the point(s) lie(s) at the z-axis (theta is either 0 or M_PI).
PGEN_AT_XY = 8, ///< Set if the point(s) lie(s) in the xy-plane (theta is M_PI2).
PGEN_METHOD_UNAVAILABLE = 2048, ///< Set if no suitable method exists (no point generated).
PGEN_DONE = 0, ///< Convenience identifier, not an actual flag.
PGEN_COORDS_CART1 = QPMS_COORDS_CART1,
PGEN_COORDS_CART2 = QPMS_COORDS_CART2,
PGEN_COORDS_CART3 = QPMS_COORDS_CART3,
PGEN_COORDS_POL = QPMS_COORDS_POL,
PGEN_COORDS_SPH = QPMS_COORDS_SPH,
PGEN_COORDS_BITRANGE = QPMS_COORDS_BITRANGE,
} PGenPointFlags;
/// Metadata generated by the fetch*() methods from PGenClassInfo
typedef struct PGenReturnDataBulk {
/// Flags describing the returned data.
PGenPointFlags flags;
size_t generated; ///< Number of points really generated
} PGenReturnDataBulk;
/// Generic PGen return type that might contain point represented in any of the supported coordinate systems.
typedef struct PGenReturnData {
PGenPointFlags flags; ///< Metadata, must contain valid coordinate system defining flags.
anycoord_point_t point; ///< Generated point in a coordinate system defined by flags.
} PGenReturnData;
/// PGen single-point return data type (1D).
typedef struct PGenZReturnData {
PGenPointFlags flags; ///< Medatata.
double point_z; ///< Generated point on a real axis.
} PGenZReturnData;
/// PGen single-point return data type (2D, polar coordinates).
typedef struct PGenPolReturnData {
PGenPointFlags flags; ///< Metadata.
pol_t point_pol; ///< Generated point in polar coordinates.
} PGenPolReturnData;
/// PGen single-point return data type (3D, spherical coordinates).
typedef struct PGenSphReturnData {
PGenPointFlags flags; ///< Metadata.
sph_t point_sph; ///< Generated point in spherical coordinates.
} PGenSphReturnData;
/// PGen single-point return data type (2D, cartesian coordinates).
typedef struct PGenCart2ReturnData {
PGenPointFlags flags; ///< Metadata.
cart2_t point_cart2; ///< Generated point in cartesian coordinates.
} PGenCart2ReturnData;
/// PGen single-point return data type (3D, cartesian coordinates).
typedef struct PGenCart3ReturnData {
PGenPointFlags flags; ///< Metadata.
cart3_t point_cart3; ///< Generated point in cartesian coordinates.
} PGenCart3ReturnData;
// convenience constants for use in the extractor implementations
static const PGenZReturnData PGenZDoneVal = {PGEN_DONE, 0};
static const PGenPolReturnData PGenPolDoneVal = {PGEN_DONE, {0,0}};
static const PGenSphReturnData PGenSphDoneVal = {PGEN_DONE, {0,0,0}};
static const PGenCart2ReturnData PGenCart2DoneVal = {PGEN_DONE, {0,0}};
static const PGenCart3ReturnData PGenCart3DoneVal = {PGEN_DONE, {0,0,0}};
/// PGen class metadata.
/**
* This structure determines the behaviour of the PGen
* instance pointing to it.
*
* For generating a single point, use the next() method.
* For generating up to N points in a single call, use the
* fetch() method.
*
* It is strongly recommended that at least the native-coordinate
* fetch method and the native-coordinate next method are implemented.
*
* Usually, each generator uses internally one "native" coordinate
* system (in lattice generators, this will typically be nD
* cartesian coordinates) in which the next() method gives its result.
*
* One does not have to explicitly implement every single method.
*
* TODO doc about the default transformations etc.
*/
typedef struct PGenClassInfo { // static PGenSph info
char * const name; // mainly for debugging purposes
int dimensionality; // lower-dimensional can be converted to higher-D, not vice versa; bit redundant with the following, whatever.
/// Info about the generator native coordinate system.
PGenPointFlags native_point_flags;
/// Generate a single point in the native coordinates.
PGenReturnData (*next)(struct PGen *);
/// Generate a single 1D point.
PGenZReturnData (*next_z)(struct PGen *);
/// Generate a single 2D point in polar coordinates.
PGenPolReturnData (*next_pol)(struct PGen *);
/// Generate a single 3D point in spherical coordinates.
PGenSphReturnData (*next_sph)(struct PGen *);
/// Generate a single 2D point in cartesian coordinates.
PGenCart2ReturnData (*next_cart2)(struct PGen *);
/// Generate a single 3D point in cartesian coordinates.
PGenCart3ReturnData (*next_cart3)(struct PGen *);
/// Generate up to \a n points in the native coordinates.
PGenReturnDataBulk (*fetch)(struct PGen *, size_t, anycoord_point_t *);
/// Generate up to \a n 1D points.
PGenReturnDataBulk (*fetch_z)(struct PGen *, size_t, double *);
/// Generate up to \a n 2D points in polar coordinates.
PGenReturnDataBulk (*fetch_pol)(struct PGen *, size_t, pol_t *);
/// Generate up to \a n 3D points in spherical coordinates.
PGenReturnDataBulk (*fetch_sph)(struct PGen *, size_t, sph_t *);
/// Generate up to \a n 2D points in cartesian coordinates.
PGenReturnDataBulk (*fetch_cart2)(struct PGen *, size_t, cart2_t *);
/// Generate up to \a n 3D points in cartesian coordinates.
PGenReturnDataBulk (*fetch_cart3)(struct PGen *, size_t, cart3_t *);
/// Destructor.
/** To be called by next() at iteration end, or by the caller
* if ending the generation prematurely
*/
void (*destructor)(struct PGen *);
} PGenClassInfo;
/// Generate a point with any of the next-methods.
static inline PGenReturnData PGen_next_nf(struct PGen *g) {
if (g->c->next)
return g->c->next(g);
else {
PGenReturnData r;
if (g->c->next_z) {
PGenZReturnData res = g->c->next_z(g);
r.flags = res.flags;
r.point.z = res.point_z;
} else if (g->c->next_pol) {
PGenPolReturnData res = g->c->next_pol(g);
r.flags = res.flags;
r.point.pol = res.point_pol;
} else if (g->c->next_cart2) {
PGenCart2ReturnData res = g->c->next_cart2(g);
r.flags = res.flags;
r.point.cart2 = res.point_cart2;
} else if (g->c->next_sph) {
PGenSphReturnData res = g->c->next_sph(g);
r.flags = res.flags;
r.point.sph = res.point_sph;
} else if (g->c->next_cart3) {
PGenCart3ReturnData res = g->c->next_cart3(g);
r.flags = res.flags;
r.point.cart3 = res.point_cart3;
} else
r.flags = PGEN_METHOD_UNAVAILABLE;
return r;
}
}
/// Generate multiple points with PGen in any coordinate system.
// Ultimate ugliness
static inline PGenReturnDataBulk PGen_fetch_any(struct PGen *g, size_t nmemb,
anycoord_point_t *target) {
if (g->c->fetch)
return g->c->fetch(g, nmemb, target);
else if (g->c->fetch_cart3) {
cart3_t *t2 = (cart3_t*) ((char *) target
+ nmemb * (sizeof(anycoord_point_t)-sizeof(cart3_t)));
PGenReturnDataBulk res = g->c->fetch_cart3(g, nmemb, t2);
for (size_t i = 0; i < nmemb; ++i)
target[i].cart3 = t2[i];
return res;
} else if (g->c->fetch_sph) {
sph_t *t2 = (sph_t*) ((char *) target
+ nmemb * (sizeof(anycoord_point_t)-sizeof(sph_t)));
PGenReturnDataBulk res = g->c->fetch_sph(g, nmemb, t2);
for (size_t i = 0; i < nmemb; ++i)
target[i].sph = t2[i];
return res;
} else if (g->c->fetch_cart2) {
cart2_t *t2 = (cart2_t*) ((char *) target
+ nmemb * (sizeof(anycoord_point_t)-sizeof(cart2_t)));
PGenReturnDataBulk res = g->c->fetch_cart2(g, nmemb, t2);
for (size_t i = 0; i < nmemb; ++i)
target[i].cart2 = t2[i];
return res;
} else if (g->c->fetch_pol) {
pol_t *t2 = (pol_t*) ((char *) target
+ nmemb * (sizeof(anycoord_point_t)-sizeof(pol_t)));
PGenReturnDataBulk res = g->c->fetch_pol(g, nmemb, t2);
for (size_t i = 0; i < nmemb; ++i)
target[i].pol = t2[i];
return res;
} else if (g->c->fetch_z) {
double *t2 = (double*) ((char *) target
+ nmemb * (sizeof(anycoord_point_t)-sizeof(double)));
PGenReturnDataBulk res = g->c->fetch_z(g, nmemb, t2);
for (size_t i = 0; i < nmemb; ++i)
target[i].z = t2[i];
return res;
} else {
// This is ridiculously inefficient
PGenReturnDataBulk res = {PGEN_NOTDONE, 0};
for (res.generated = 0; res.generated < nmemb;
++res.generated) {
PGenReturnData res1 = PGen_next_nf(g);
QPMS_ENSURE(!(res1.flags & PGEN_METHOD_UNAVAILABLE),
"No method found to generate points. The PGenClassInfo"
" %s is apparently broken.", g->c->name);
if (res1.flags & PGEN_NOTDONE) {
target[res.generated] = res1.point;
// The coordinate system generated by next() must be consistent:
assert(!res.generated || ((res1.flags & PGEN_COORDS_BITRANGE) == (res.flags & PGEN_COORDS_BITRANGE)));
res.flags |= res1.flags & PGEN_COORDS_BITRANGE;
} else {
res.flags &= ~PGEN_NOTDONE;
break;
}
}
// Do not guarantee anything for; low priority TODO
res.flags &= ~(PGEN_OLD_R & PGEN_SINGLE_R);
return res;
}
}
/// Generate a point with any of the next-methods or fetch-methods.
static inline PGenReturnData PGen_next(struct PGen *g) {
PGenReturnData res = PGen_next_nf(g);
if (!(res.flags & PGEN_METHOD_UNAVAILABLE))
return res;
else { // Slow if implementation is stupid, but short!
PGenReturnDataBulk resb = PGen_fetch_any(g, 1, &res.point);
if (resb.generated)
// the | PGEN_NOTDONE may not be needed, but my brain melted
res.flags = resb.flags | PGEN_NOTDONE;
else
res.flags = PGEN_DONE;
return res;
}
}
/// Generate multiple points in spherical coordinates.
static inline PGenReturnDataBulk PGen_fetch_sph(struct PGen *g,
size_t nmemb, sph_t *target) {
if (g->c->fetch_sph)
return g->c->fetch_sph(g, nmemb, target);
else {
anycoord_point_t *tmp;
QPMS_CRASHING_MALLOC(tmp, sizeof(anycoord_point_t) * nmemb);
PGenReturnDataBulk res = PGen_fetch_any(g, nmemb, tmp);
anycoord_arr2something(target, QPMS_COORDS_SPH,
tmp, res.flags, res.generated);
free(tmp);
res.flags = (res.flags & ~QPMS_COORDS_BITRANGE)
| QPMS_COORDS_SPH;
return res;
}
}
/// Generate multiple points in 3D cartesian coordinates.
static inline PGenReturnDataBulk PGen_fetch_cart3(struct PGen *g,
size_t nmemb, cart3_t *target) {
if (g->c->fetch_cart3)
return g->c->fetch_cart3(g, nmemb, target);
else {
anycoord_point_t *tmp;
QPMS_CRASHING_MALLOC(tmp, sizeof(anycoord_point_t) * nmemb);
PGenReturnDataBulk res = PGen_fetch_any(g, nmemb, tmp);
anycoord_arr2something(target, QPMS_COORDS_CART3,
tmp, res.flags, res.generated);
free(tmp);
res.flags = (res.flags & ~QPMS_COORDS_BITRANGE)
| QPMS_COORDS_CART3;
return res;
}
}
/// Generate multiple points in polar coordinates.
static inline PGenReturnDataBulk PGen_fetch_pol(struct PGen *g,
size_t nmemb, pol_t *target) {
if (g->c->fetch_pol)
return g->c->fetch_pol(g, nmemb, target);
else {
anycoord_point_t *tmp;
QPMS_CRASHING_MALLOC(tmp, sizeof(anycoord_point_t) * nmemb);
PGenReturnDataBulk res = PGen_fetch_any(g, nmemb, tmp);
anycoord_arr2something(target, QPMS_COORDS_POL,
tmp, res.flags, res.generated);
free(tmp);
res.flags = (res.flags & ~QPMS_COORDS_BITRANGE)
| QPMS_COORDS_POL;
return res;
}
}
/// Generate multiple points in 2D cartesian coordinates.
static inline PGenReturnDataBulk PGen_fetch_cart2(struct PGen *g,
size_t nmemb, cart2_t *target) {
if (g->c->fetch_cart2)
return g->c->fetch_cart2(g, nmemb, target);
else {
anycoord_point_t *tmp;
QPMS_CRASHING_MALLOC(tmp, sizeof(anycoord_point_t) * nmemb);
PGenReturnDataBulk res = PGen_fetch_any(g, nmemb, tmp);
anycoord_arr2something(target, QPMS_COORDS_CART2,
tmp, res.flags, res.generated);
free(tmp);
res.flags = (res.flags & ~QPMS_COORDS_BITRANGE)
| QPMS_COORDS_CART2;
return res;
}
}
/// Generate multiple points in 1D cartesian coordinates.
static inline PGenReturnDataBulk PGen_fetch_z(struct PGen *g,
size_t nmemb, double *target) {
if (g->c->fetch_z)
return g->c->fetch_z(g, nmemb, target);
else {
anycoord_point_t *tmp;
QPMS_CRASHING_MALLOC(tmp, sizeof(anycoord_point_t) * nmemb);
PGenReturnDataBulk res = PGen_fetch_any(g, nmemb, tmp);
anycoord_arr2something(target, QPMS_COORDS_CART1,
tmp, res.flags, res.generated);
free(tmp);
res.flags = (res.flags & ~QPMS_COORDS_BITRANGE)
| QPMS_COORDS_CART1;
return res;
}
}
/// Deallocate and invalidate a PGen point generator.
static inline void PGen_destroy(PGen *g) {
g->c->destructor(g);
assert(g->stateData == NULL); // this should be done by the destructor
}
/// Generate a point in a 1D real space.
static inline PGenZReturnData PGen_next_z(PGen *g) {
if (g->c->next_z)
return g->c->next_z(g);
else { // Super-slow generic fallback.
PGenReturnData res = PGen_next(g);
if (res.flags & PGEN_NOTDONE) {
PGenZReturnData r;
r.point_z = anycoord2cart1(res.point, res.flags);
r.flags = (res.flags & ~QPMS_COORDS_BITRANGE)
| QPMS_COORDS_CART1;
return r;
} else
return PGenZDoneVal;
}
}
/// Generate a point in a 3D real space (spherical coordinates).
static inline PGenSphReturnData PGen_next_sph(PGen *g) {
if (g->c->next_sph)
return g->c->next_sph(g);
else { // Super-slow generic fallback.
PGenReturnData res = PGen_next(g);
if (res.flags & PGEN_NOTDONE) {
PGenSphReturnData r;
r.point_sph = anycoord2sph(res.point, res.flags);
r.flags = (res.flags & ~QPMS_COORDS_BITRANGE)
| QPMS_COORDS_SPH;
return r;
} else
return PGenSphDoneVal;
}
}
/// Generate a point in a 2D real space (polar coordinates).
static inline PGenPolReturnData PGen_next_pol(PGen *g) {
if (g->c->next_pol)
return g->c->next_pol(g);
else { // Super-slow generic fallback.
PGenReturnData res = PGen_next(g);
if (res.flags & PGEN_NOTDONE) {
PGenPolReturnData r;
r.point_pol = anycoord2pol(res.point, res.flags);
r.flags = (res.flags & ~QPMS_COORDS_BITRANGE)
| QPMS_COORDS_POL;
return r;
} else
return PGenPolDoneVal;
}
}
/// Generate a point in a 3D real space (cartesian coordinates).
static inline PGenCart3ReturnData PGen_next_cart3(PGen *g) {
if (g->c->next_cart3)
return g->c->next_cart3(g);
else { // Super-slow generic fallback.
PGenReturnData res = PGen_next(g);
if (res.flags & PGEN_NOTDONE) {
PGenCart3ReturnData r;
r.point_cart3 = anycoord2cart3(res.point, res.flags);
r.flags = (res.flags & ~QPMS_COORDS_BITRANGE)
| QPMS_COORDS_CART3;
return r;
} else
return PGenCart3DoneVal;
}
}
/// Generate a point in a 2D real space (cartesian coordinates).
static inline PGenCart2ReturnData PGen_next_cart2(PGen *g) {
if (g->c->next_cart2)
return g->c->next_cart2(g);
else { // Super-slow generic fallback.
PGenReturnData res = PGen_next(g);
if (res.flags & PGEN_NOTDONE) {
PGenCart2ReturnData r;
r.point_cart2 = anycoord2cart2(res.point, res.flags);
r.flags = (res.flags & ~QPMS_COORDS_BITRANGE)
| QPMS_COORDS_CART2;
return r;
} else
return PGenCart2DoneVal;
}
}
#if 0
/// Generate up to \a n points.
static inline PGenReturnDataBulk PGen_fetch(PGen *g, size_t n, anycoord_point_t *arr){
if (g->c->fetch)
return g->c->fetch(g, n, arr);
else abort();
}
#endif
static inline bool PGenSph_notDone(PGenSphReturnData data) {
return data.flags & PGEN_NOTDONE ? true : false;
}
static inline bool PGenCart3_notDone(PGenCart3ReturnData data) {
return data.flags & PGEN_NOTDONE ? true : false;
}
/// Standard PGen spherical coordinates -> 3d cartesian convertor.
static inline PGenCart3ReturnData PGenReturnDataConv_sph_cart3(PGenSphReturnData sphdata){
PGenCart3ReturnData c3data;
c3data.flags = sphdata.flags;
c3data.point_cart3 = sph2cart(sphdata.point_sph);
return c3data;
}
/// Standard PGen 3d cartesian -> spherical coordinates convertor.
static inline PGenSphReturnData PGenReturnDataConv_cart3_sph(PGenCart3ReturnData c){
PGenSphReturnData s;
s.flags = c.flags;
s.point_sph = cart2sph(c.point_cart3);
return s;
}
/*
* Some basic lattice generators implementing the abstract interface above (implemented in latticegens.c).
*/
/// 2D point generator that simply iterates over an existing array of Point2d.
extern const PGenClassInfo PGen_FromPoint2DArray; // TODO Do I even need this to be declared here?
/// PGen_FromPoint2DArray constructor.
PGen PGen_FromPoints2DArray_new(const point2d *points, size_t len);
/// 1D equidistant point generator.
extern const PGenClassInfo PGen_1D;
typedef enum PGen_1D_incrementDirection{
//PGEN_1D_POSITIVE_INC, // not implemented
//PGEN_1D_NEGATIVE_INC, // not implemented
PGEN_1D_INC_FROM_ORIGIN,
PGEN_1D_INC_TOWARDS_ORIGIN
} PGen_1D_incrementDirection;
/// PGen_1D point generator constructor.
PGen PGen_1D_new_minMaxR(double period, ///< Distance between points.
double offset, ///< Lattice offset from zero.
double minR, ///< Lower bound of |z| of the generated points.
bool inc_minR, ///< Include also |z| == minR (if applicable).
double maxR, ///< Upper bound of |z| of the generated points.
bool inc_maxR, ///< Include also |z| == maxR if applicable.
PGen_1D_incrementDirection incdir ///< Order of generated points.
);
extern const PGenClassInfo PGen_xyWeb;
PGen PGen_xyWeb_new(cart2_t b1, cart2_t b2, double rtol, cart2_t offset,
double minR, bool inc_minR, double maxR, bool inc_maxR);
/// Returns a number larger or equal than the number of all the points generated by a PGen_xyWeb.
size_t PGen_xyWeb_sizecap(cart2_t b1, cart2_t b2, double rtol, cart2_t offset,
double minR, bool inc_minR, double maxR, bool inc_maxR);
extern const PGenClassInfo PGen_LatticeRadialHeap2D;
extern const PGenClassInfo PGen_LatticeRadialHeap3D;
PGen PGen_LatticeRadialHeap2D_new(cart2_t b1, cart2_t b2, cart2_t offset,
double minR, bool inc_minR, double maxR, bool inc_maxR);
PGen PGen_LatticeRadialHeap3D_new(const cart3_t *b1, const cart3_t *b2, const cart3_t *b3,
const cart3_t *offset, double minR, bool inc_minR, double maxR, bool inc_maxR);
/// A metagenerator generating points from another generator shifted by a constant.
extern const PGenClassInfo PGen_shifted;
PGen PGen_shifted_new(PGen orig, cart3_t shift);
/*
* THE NICE PART (adaptation of lattices2d.py)
* ===========================================
*
* all the functions are prefixed with l2d_
* convention for argument order: inputs, *outputs, add. params
*/
#define BASIS_RTOL 1e-13
// Bravais lattice types
typedef enum {
OBLIQUE = 1,
RECTANGULAR = 2,
SQUARE = 4,
RHOMBIC = 5,
EQUILATERAL_TRIANGULAR = 3,
RIGHT_ISOSCELES=SQUARE,
PARALLELOGRAMMIC=OBLIQUE,
CENTERED_RHOMBIC=RECTANGULAR,
RIGHT_TRIANGULAR=RECTANGULAR,
CENTERED_RECTANGULAR=RHOMBIC,
ISOSCELE_TRIANGULAR=RHOMBIC,
RIGHT_ISOSCELE_TRIANGULAR=SQUARE,
HEXAGONAL=EQUILATERAL_TRIANGULAR
} LatticeType2;
#if 0
// Wallpaper groups
typedef enum {
TODO
} SpaceGroup2;
#endif
// Just for detecting the right angles (needed for generators).
typedef enum {
NOT_ORTHOGONAL = 0,
ORTHOGONAL_01 = 1,
ORTHOGONAL_12 = 2,
ORTHOGONAL_02 = 4
} LatticeFlags;
/*
* Lagrange-Gauss reduction of a 2D basis.
* The output shall satisfy |out1| <= |out2| <= |out2 - out1|
*/
void l2d_reduceBasis(cart2_t in1, cart2_t in2, cart2_t *out1, cart2_t *out2);
// This one uses LLL reduction.
void l3d_reduceBasis(const cart3_t in[3], cart3_t out[3]);
/*
* This gives the "ordered shortest triple" of base vectors (each pair from the triple
* is a base) and there may not be obtuse angle between o1, o2 and between o2, o3
*/
void l2d_shortestBase3(cart2_t i1, cart2_t i2, cart2_t *o1, cart2_t *o2, cart2_t *o3);
/*
* TODO doc
* return value is 4 or 6.
*/
int l2d_shortestBase46(cart2_t i1, cart2_t i2, cart2_t *o1, cart2_t *o2, cart2_t *o3, cart2_t *o4, cart2_t *o5, cart2_t *o6, double rtol);
// variant
int l2d_shortestBase46_arr(cart2_t i1, cart2_t i2, cart2_t *oarr, double rtol);
// Determines whether angle between inputs is obtuse
bool l2d_is_obtuse_r(cart2_t i1, cart2_t i2, double rtol);
bool l2d_is_obtuse(cart2_t i1, cart2_t i2);
/*
* Given two basis vectors, returns 2D Bravais lattice type.
*/
LatticeType2 l2d_classifyLattice(cart2_t b1, cart2_t b2, double rtol);
// Detects right angles.
LatticeFlags l2d_detectRightAngles(cart2_t b1, cart2_t b2, double rtol);
LatticeFlags l3d_detectRightAngles(const cart3_t basis[3], double rtol);
// Other functions in lattices2d.py: TODO?
// range2D()
// generateLattice()
// generateLatticeDisk()
// cutWS()
// filledWS()
// change_basis()
/*
* Given basis vectors, returns the corners of the Wigner-Seits unit cell (W1, W2, -W1, W2)
* for rectangular and square lattice or (w1, w2, w3, -w1, -w2, -w3) otherwise.
*/
int l2d_cellCornersWS(cart2_t i1, cart2_t i2, cart2_t *o1, cart2_t *o2, cart2_t *o3, cart2_t *o4, cart2_t *o5, cart2_t *o6, double rtol);
// variant
int l2d_cellCornersWS_arr(cart2_t i1, cart2_t i2, cart2_t *oarr, double rtol);
// Reciprocal bases; returns 0 on success, possibly a non-zero if b1 and b2 are parallel
int l2d_reciprocalBasis1(cart2_t b1, cart2_t b2, cart2_t *rb1, cart2_t *rb2);
int l2d_reciprocalBasis2pi(cart2_t b1, cart2_t b2, cart2_t *rb1, cart2_t *rb2);
// 3D reciprocal bases; returns (direct) unit cell volume with possible sign. Assumes direct lattice basis already reduced.
double l3d_reciprocalBasis1(const cart3_t direct_basis[3], cart3_t reciprocal_basis[3]);
double l3d_reciprocalBasis2pi(const cart3_t direct_basis[3], cart3_t reciprocal_basis[3]);
double l2d_unitcell_area(cart2_t b1, cart2_t b2);
// returns the radius of inscribed circle of a hexagon (or rectangle/square if applicable) created by the shortest base triple
double l2d_hexWebInCircleRadius(cart2_t b1, cart2_t b2);
/*
* THE MORE OR LESS OK PART
* ========================
*/
/*
* General set of points ordered by the r-coordinate.
* Typically, this will include all lattice inside a certain circle.
* This structure is internally used by the "lattice generators" below.
* It does not have its memory management of its own, as it is handled
* by the "generators". For everything except the generators,
* this structure shall be read-only.
*/
typedef struct {
size_t nrs; // number of different radii
double *rs; // the radii; of length nrs (largest contained radius == rs[nrs-1])
point2d *base;
ptrdiff_t *r_offsets; // of length nrs+1 (using relative offsets due to possible realloc's)
// the jth point of i-th radius is base[r_offsets[i]+j] or using the inline below..
/* // redundand (therefore removed) members
* point2d *points; // redundant as it is the same as points_at_r[0]
* size_t npoints; // redundant as it is the same as points_at_r[nrs]-points_at_r[0]
*/
} points2d_rordered_t;
// sorts arbitrary points and creates points2d_rordered_t
points2d_rordered_t *points2d_rordered_frompoints(const point2d *orig_base,
size_t nmemb, double rtol, double atol);
// returns a copy but shifted by a constant (actually in a stupid way, but whatever)
points2d_rordered_t *points2d_rordered_shift(const points2d_rordered_t *orig,
point2d shift, double rtol, double atol);
// returns a copy but scaled by a factor
points2d_rordered_t *points2d_rordered_scale(const points2d_rordered_t *orig,
double factor);
/* The destructor: use only for results of
* - points2D_rordered_frompoints,
* - points2d_rordered_shift,
* - points2d_rordered_scale.
*/
void points2d_rordered_free(points2d_rordered_t *);
static inline point2d points2d_rordered_get_point(const points2d_rordered_t *ps, int r_order, int i) {
assert(i >= 0);
assert(r_order < ps->nrs);
assert(i < (ps->r_offsets[r_order+1] - ps->r_offsets[r_order]));
return ps->base[ps->r_offsets[r_order] + i];
}
static inline double points2d_rordered_get_r(const points2d_rordered_t *ps, int r_order) {
assert(r_order < ps->nrs);
return ps->rs[r_order];
}
ptrdiff_t points2d_rordered_locate_r(const points2d_rordered_t *, double r);
// returns a "view" (does not copy any of the arrays)
// -- DO NOT FREE orig BEFORE THE END OF SCOPE OF THE RESULT
points2d_rordered_t points2d_rordered_annulus(const points2d_rordered_t *orig, double minr, bool minr_inc,
double maxr, bool maxr_inc);
#if 0
/// Gives the frequency of \a n-th empty lattice mode at a given wave vector \a k.
double qpms_emptylattice2_mode_nth(
cart2_t b1_rec, ///< First reciprocal lattice base vector
cart2_t b2_rec, ///< Second reciprocal lattice base vector
double rtol, ///< Relative tolerance to detect right angles
cart2_t k, ///< The wave vector
double wave_speed, ///< Wave speed in a given medium (i.e. vacuum speed / refractive index).
size_t N ///< Index of the mode (note that degenerate modes are counted multiple times).
);
/// Gives the first `maxindex` frequencies of empty lattice modes at a given wave vector \a k.
void qpms_emptylattice2_modes_maxindex(
double target_freqs[], ///< Target array of size maxindex.
cart2_t b1_rec, ///< First reciprocal lattice base vector
cart2_t b2_rec, ///< Second reciprocal lattice base vector
double rtol, ///< Relative tolerance to detect right angles
cart2_t k, ///< The wave vector
double wave_speed, ///< Wave speed in a given medium (i.e. vacuum speed / refractive index).
size_t maxindex ///< Number of the frequencies generated.
);
#endif
/// Gives the frequencies of empty lattice modes at a given wave vector \a k up to \a maxfreq and one more.
/**
* The frequencies are saved to a newly allocated array *target_freqs (to be deallocated
* using free() by the caller).
*
* \returns Number of found mode frequencies lower or equal than \a maxfreq plus one.
*/
size_t qpms_emptylattice2_modes_maxfreq(
double **target_freqs,
cart2_t b1_rec, ///< First reciprocal lattice base vector
cart2_t b2_rec, ///< Second reciprocal lattice base vector
double rtol, ///< Relative tolerance to detect right angles
cart2_t k, ///< The wave vector
double wave_speed, ///< Wave speed in a given medium (i.e. vacuum speed / refractive index).
double maxfreq ///< The maximum frequency.
);
/// Gives the frequencies of two empty lattice modes nearest to \a omega at a given wave vector \a k.
void qpms_emptylattice2_modes_nearest(
double target[2], ///< Target array with lower ([0]) and upper ([1]) frequency.
cart2_t b1_rec, ///< First reciprocal lattice base vector
cart2_t b2_rec, ///< Second reciprocal lattice base vector
double rtol, ///< Relative tolerance to detect right angles
cart2_t k, ///< The wave vector
double wave_speed, ///< Wave speed in a given medium (i.e. vacuum speed / refractive index).
double omega ///< The frequency around which the frequencies are searched.
);
/*
* THE UGLY PART
* =============
*/
/*
* EQUILATERAL TRIANGULAR LATTICE
*/
typedef enum {
TRIANGULAR_VERTICAL, // there is a lattice base vector parallel to the y-axis
TRIANGULAR_HORIZONTAL // there is a lattice base vector parallel to the x-axis
} TriangularLatticeOrientation;
static inline TriangularLatticeOrientation reverseTriangularLatticeOrientation(TriangularLatticeOrientation o){
switch(o) {
case TRIANGULAR_VERTICAL:
return TRIANGULAR_HORIZONTAL;
break;
case TRIANGULAR_HORIZONTAL:
return TRIANGULAR_VERTICAL;
break;
default:
abort();
}
abort();
}
// implementation data structures; not needed in the header file
typedef struct triangular_lattice_gen_privstuff_t triangular_lattice_gen_privstuff_t;
typedef struct {
// public:
points2d_rordered_t ps;
TriangularLatticeOrientation orientation;
double a; // lattice vector length
// not sure if needed:
bool includes_origin;
// Denotes an offset of the "origin" point; meaning step hexshift * a / sqrt(2) upwards
// or leftwards for the horizontal or vertical orientations, respectively.
int hexshift;
// private:
triangular_lattice_gen_privstuff_t *priv;
} triangular_lattice_gen_t;
triangular_lattice_gen_t *triangular_lattice_gen_init(double a, TriangularLatticeOrientation ori, bool include_origin,
int halfoffset);
const points2d_rordered_t * triangular_lattice_gen_getpoints(const triangular_lattice_gen_t *g);
int triangular_lattice_gen_extend_to_r(triangular_lattice_gen_t *g, double r);
int triangular_lattice_gen_extend_to_steps(triangular_lattice_gen_t *g, int maxsteps);
void triangular_lattice_gen_free(triangular_lattice_gen_t *g);
/*
* HONEYCOMB LATTICE
*/
typedef struct {
// public:
points2d_rordered_t ps;
TriangularLatticeOrientation orientation;
double a;
double h;
// private:
triangular_lattice_gen_t *tg;
} honeycomb_lattice_gen_t;
honeycomb_lattice_gen_t *honeycomb_lattice_gen_init_h(double h, TriangularLatticeOrientation ori);
honeycomb_lattice_gen_t *honeycomb_lattice_gen_init_a(double a, TriangularLatticeOrientation ori);
int honeycomb_lattice_gen_extend_to_steps(honeycomb_lattice_gen_t *g, int maxsteps);
int honeycomb_lattice_gen_extend_to_r(honeycomb_lattice_gen_t *g, double r);
void honeycomb_lattice_gen_free(honeycomb_lattice_gen_t *g);
#ifdef __cplusplus
}
#endif
#endif // LATTICES_H