549 lines
14 KiB
Plaintext
549 lines
14 KiB
Plaintext
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||
\lyxformat 583
|
||
\begin_document
|
||
\begin_header
|
||
\save_transient_properties true
|
||
\origin unavailable
|
||
\textclass article
|
||
\use_default_options true
|
||
\maintain_unincluded_children false
|
||
\language english
|
||
\language_package default
|
||
\inputencoding utf8
|
||
\fontencoding auto
|
||
\font_roman "default" "TeX Gyre Pagella"
|
||
\font_sans "default" "default"
|
||
\font_typewriter "default" "default"
|
||
\font_math "auto" "auto"
|
||
\font_default_family default
|
||
\use_non_tex_fonts false
|
||
\font_sc false
|
||
\font_roman_osf true
|
||
\font_sans_osf false
|
||
\font_typewriter_osf false
|
||
\font_sf_scale 100 100
|
||
\font_tt_scale 100 100
|
||
\use_microtype false
|
||
\use_dash_ligatures true
|
||
\graphics default
|
||
\default_output_format default
|
||
\output_sync 0
|
||
\bibtex_command default
|
||
\index_command default
|
||
\float_placement class
|
||
\float_alignment class
|
||
\paperfontsize default
|
||
\spacing single
|
||
\use_hyperref true
|
||
\pdf_author "Marek Nečada"
|
||
\pdf_bookmarks true
|
||
\pdf_bookmarksnumbered false
|
||
\pdf_bookmarksopen false
|
||
\pdf_bookmarksopenlevel 1
|
||
\pdf_breaklinks false
|
||
\pdf_pdfborder false
|
||
\pdf_colorlinks false
|
||
\pdf_backref false
|
||
\pdf_pdfusetitle true
|
||
\papersize default
|
||
\use_geometry false
|
||
\use_package amsmath 1
|
||
\use_package amssymb 1
|
||
\use_package cancel 1
|
||
\use_package esint 1
|
||
\use_package mathdots 1
|
||
\use_package mathtools 1
|
||
\use_package mhchem 1
|
||
\use_package stackrel 1
|
||
\use_package stmaryrd 1
|
||
\use_package undertilde 1
|
||
\cite_engine basic
|
||
\cite_engine_type default
|
||
\biblio_style plain
|
||
\use_bibtopic false
|
||
\use_indices false
|
||
\paperorientation portrait
|
||
\suppress_date false
|
||
\justification true
|
||
\use_refstyle 1
|
||
\use_minted 0
|
||
\use_lineno 0
|
||
\index Index
|
||
\shortcut idx
|
||
\color #008000
|
||
\end_index
|
||
\secnumdepth 3
|
||
\tocdepth 3
|
||
\paragraph_separation indent
|
||
\paragraph_indentation default
|
||
\is_math_indent 0
|
||
\math_numbering_side default
|
||
\quotes_style english
|
||
\dynamic_quotes 0
|
||
\papercolumns 1
|
||
\papersides 1
|
||
\paperpagestyle default
|
||
\tablestyle default
|
||
\tracking_changes false
|
||
\output_changes false
|
||
\html_math_output 0
|
||
\html_css_as_file 0
|
||
\html_be_strict false
|
||
\end_header
|
||
|
||
\begin_body
|
||
|
||
\begin_layout Section
|
||
Infinite periodic systems
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\dlv}{\vect b}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\rlv}{\vect b}
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Although large finite systems are where MSTMM excels the most, there are
|
||
several reasons that makes its extension to infinite lattices (where periodic
|
||
boundary conditions might be applied) desirable as well.
|
||
Other methods might be already fast enough, but MSTMM will be faster in
|
||
most cases in which there is enough spacing between the neighboring particles.
|
||
MSTMM works well with any space group symmetry the system might have (as
|
||
opposed to, for example, FDTD with cubic mesh applied to a honeycomb lattice),
|
||
which makes e.g.
|
||
application of group theory in mode analysis quite easy.
|
||
\begin_inset Note Note
|
||
status open
|
||
|
||
\begin_layout Plain Layout
|
||
Topology anoyne?
|
||
\end_layout
|
||
|
||
\end_inset
|
||
|
||
And finally, having a method that handles well both infinite and large
|
||
finite system gives a possibility to study finite-size effects in periodic
|
||
scatterer arrays.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Notation
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Formulation of the problem
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Let us have a linear system of compact EM scatterers on a homogeneous background
|
||
as in Section
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "subsec:Multiple-scattering"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
, but this time, system shall be periodic: let there be a
|
||
\begin_inset Formula $d$
|
||
\end_inset
|
||
|
||
-dimensional (
|
||
\begin_inset Formula $d$
|
||
\end_inset
|
||
|
||
can be 1, 2 or 3) lattice embedded into the three-dimensional real space,
|
||
with lattice vectors.
|
||
set of
|
||
\begin_inset Formula $d$
|
||
\end_inset
|
||
|
||
(one to three) lattice vectorsAssume a system of compact EM scatterers
|
||
in otherwise homogeneous and isotropic medium, and assume that the system,
|
||
i.e.
|
||
both the medium and the scatterers, have linear response.
|
||
A scattering problem in such system can be written as
|
||
\begin_inset Formula
|
||
\[
|
||
A_{α}=T_{α}P_{α}=T_{α}(\sum_{β}S_{α\leftarrowβ}A_{β}+P_{0α})
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
where
|
||
\begin_inset Formula $T_{α}$
|
||
\end_inset
|
||
|
||
is the
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix for scatterer α,
|
||
\begin_inset Formula $A_{α}$
|
||
\end_inset
|
||
|
||
is its vector of the scattered wave expansion coefficient (the multipole
|
||
indices are not explicitely indicated here) and
|
||
\begin_inset Formula $P_{α}$
|
||
\end_inset
|
||
|
||
is the local expansion of the incoming sources.
|
||
|
||
\begin_inset Formula $S_{α\leftarrowβ}$
|
||
\end_inset
|
||
|
||
is ...
|
||
and ...
|
||
is ...
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
...
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
\sum_{β}(\delta_{αβ}-T_{α}S_{α\leftarrowβ})A_{β}=T_{α}P_{0α}.
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Now suppose that the scatterers constitute an infinite lattice
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\[
|
||
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=T_{\vect aα}P_{0\vect aα}.
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
Due to the periodicity, we can write
|
||
\begin_inset Formula $S_{\vect aα\leftarrow\vect bβ}=S_{α\leftarrowβ}(\vect b-\vect a)$
|
||
\end_inset
|
||
|
||
and
|
||
\begin_inset Formula $T_{\vect aα}=T_{\alpha}$
|
||
\end_inset
|
||
|
||
.
|
||
In order to find lattice modes, we search for solutions with zero RHS
|
||
\begin_inset Formula
|
||
\[
|
||
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=0
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
and we assume periodic solution
|
||
\begin_inset Formula $A_{\vect b\beta}(\vect k)=A_{\vect a\beta}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$
|
||
\end_inset
|
||
|
||
, yielding
|
||
\begin_inset Formula
|
||
\begin{eqnarray*}
|
||
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect a\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b-\vect a}} & = & 0,\\
|
||
\sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α}S_{\vect 0α\leftarrow\vect bβ})A_{\vect 0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\
|
||
\sum_{β}(\delta_{αβ}-T_{α}\underbrace{\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect 0\beta}\left(\vect k\right) & = & 0,\\
|
||
A_{\vect 0\alpha}\left(\vect k\right)-T_{α}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect 0\beta}\left(\vect k\right) & = & 0.
|
||
\end{eqnarray*}
|
||
|
||
\end_inset
|
||
|
||
Therefore, in order to solve the modes, we need to compute the
|
||
\begin_inset Quotes eld
|
||
\end_inset
|
||
|
||
lattice Fourier transform
|
||
\begin_inset Quotes erd
|
||
\end_inset
|
||
|
||
of the translation operator,
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Computing the Fourier sum of the translation operator
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
The problem evaluating
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:W definition"
|
||
|
||
\end_inset
|
||
|
||
is the asymptotic behaviour of the translation operator,
|
||
\begin_inset Formula $S_{\vect 0α\leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$
|
||
\end_inset
|
||
|
||
that makes the convergence of the sum quite problematic for any
|
||
\begin_inset Formula $d>1$
|
||
\end_inset
|
||
|
||
-dimensional lattice.
|
||
\begin_inset Foot
|
||
status open
|
||
|
||
\begin_layout Plain Layout
|
||
Note that
|
||
\begin_inset Formula $d$
|
||
\end_inset
|
||
|
||
here is dimensionality of the lattice, not the space it lies in, which
|
||
I for certain reasons assume to be three.
|
||
(TODO few notes on integration and reciprocal lattices in some appendix)
|
||
\end_layout
|
||
|
||
\end_inset
|
||
|
||
In electrostatics, one can solve this problem with Ewald summation.
|
||
Its basic idea is that if what asymptoticaly decays poorly in the direct
|
||
space, will perhaps decay fast in the Fourier space.
|
||
I use the same idea here, but everything will be somehow harder than in
|
||
electrostatics.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Let us re-express the sum in
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:W definition"
|
||
|
||
\end_inset
|
||
|
||
in terms of integral with a delta comb
|
||
\begin_inset FormulaMacro
|
||
\renewcommand{\basis}[1]{\mathfrak{#1}}
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
W_{\alpha\beta}(\vect k)=\int\ud^{d}\vect r\dc{\basis u}(\vect r)S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})e^{i\vect k\cdot\vect r}.\label{eq:W integral}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
The translation operator
|
||
\begin_inset Formula $S$
|
||
\end_inset
|
||
|
||
is now a function defined in the whole 3d space;
|
||
\begin_inset Formula $\vect r_{\alpha},\vect r_{\beta}$
|
||
\end_inset
|
||
|
||
are the displacements of scatterers
|
||
\begin_inset Formula $\alpha$
|
||
\end_inset
|
||
|
||
and
|
||
\begin_inset Formula $\beta$
|
||
\end_inset
|
||
|
||
in a unit cell.
|
||
The arrow notation
|
||
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})$
|
||
\end_inset
|
||
|
||
means
|
||
\begin_inset Quotes eld
|
||
\end_inset
|
||
|
||
translation operator for spherical waves originating in
|
||
\begin_inset Formula $\vect r+\vect r_{\beta}$
|
||
\end_inset
|
||
|
||
evaluated in
|
||
\begin_inset Formula $\vect r_{\alpha}$
|
||
\end_inset
|
||
|
||
|
||
\begin_inset Quotes erd
|
||
\end_inset
|
||
|
||
and obviously
|
||
\begin_inset Formula $S$
|
||
\end_inset
|
||
|
||
is in fact a function of a single 3d argument,
|
||
\begin_inset Formula $S(\vect r_{\alpha}\leftarrow\vect r+\vect r_{\beta})=S(\vect 0\leftarrow\vect r+\vect r_{\beta}-\vect r_{\alpha})=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)=S(-\vect r-\vect r_{\beta}+\vect r_{\alpha})$
|
||
\end_inset
|
||
|
||
.
|
||
Expression
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:W integral"
|
||
|
||
\end_inset
|
||
|
||
can be rewritten as
|
||
\begin_inset Formula
|
||
\[
|
||
W_{\alpha\beta}(\vect k)=\left(2\pi\right)^{\frac{d}{2}}\uaft{(\dc{\basis u}S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0))\left(\vect k\right)}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
where changed the sign of
|
||
\begin_inset Formula $\vect r/\vect{\bullet}$
|
||
\end_inset
|
||
|
||
has been swapped under integration, utilising evenness of
|
||
\begin_inset Formula $\dc{\basis u}$
|
||
\end_inset
|
||
|
||
.
|
||
Fourier transform of product is convolution of Fourier transforms, so (using
|
||
formula
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:Dirac comb uaFt"
|
||
|
||
\end_inset
|
||
|
||
for the Fourier transform of Dirac comb)
|
||
\begin_inset Formula
|
||
\begin{eqnarray}
|
||
W_{\alpha\beta}(\vect k) & = & \left(\left(\uaft{\dc{\basis u}}\right)\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)(\vect k)\nonumber \\
|
||
& = & \frac{\left|\det\recb{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\left(\dc{\recb{\basis u}}^{(d)}\ast\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\right)\left(\vect k\right)\nonumber \\
|
||
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W sum in reciprocal space}\\
|
||
& = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}e^{i\left(\vect k-\vect K\right)\cdot\left(-\vect r_{\beta}+\vect r_{\alpha}\right)}\left(\uaft{S(\vect{\bullet}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\nonumber
|
||
\end{eqnarray}
|
||
|
||
\end_inset
|
||
|
||
|
||
\begin_inset Note Note
|
||
status open
|
||
|
||
\begin_layout Plain Layout
|
||
Factor
|
||
\begin_inset Formula $\left(2\pi\right)^{\frac{d}{2}}$
|
||
\end_inset
|
||
|
||
cancels out with the
|
||
\begin_inset Formula $\left(2\pi\right)^{-\frac{d}{2}}$
|
||
\end_inset
|
||
|
||
factor appearing in the convolution/product formula in the unitary angular
|
||
momentum convention.
|
||
|
||
\end_layout
|
||
|
||
\end_inset
|
||
|
||
As such, this is not extremely helpful because the the
|
||
\emph on
|
||
whole
|
||
\emph default
|
||
translation operator
|
||
\begin_inset Formula $S$
|
||
\end_inset
|
||
|
||
has singularities in origin, hence its Fourier transform
|
||
\begin_inset Formula $\uaft S$
|
||
\end_inset
|
||
|
||
will decay poorly.
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
However, Fourier transform is linear, so we can in principle separate
|
||
\begin_inset Formula $S$
|
||
\end_inset
|
||
|
||
in two parts,
|
||
\begin_inset Formula $S=S^{\textup{L}}+S^{\textup{S}}$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\begin_inset Formula $S^{\textup{S}}$
|
||
\end_inset
|
||
|
||
is a short-range part that decays sufficiently fast with distance so that
|
||
its direct-space lattice sum converges well;
|
||
\begin_inset Formula $S^{\textup{S}}$
|
||
\end_inset
|
||
|
||
must as well contain all the singularities of
|
||
\begin_inset Formula $S$
|
||
\end_inset
|
||
|
||
in the origin.
|
||
The other part,
|
||
\begin_inset Formula $S^{\textup{L}}$
|
||
\end_inset
|
||
|
||
, will retain all the slowly decaying terms of
|
||
\begin_inset Formula $S$
|
||
\end_inset
|
||
|
||
but it also has to be smooth enough in the origin, so that its Fourier
|
||
transform
|
||
\begin_inset Formula $\uaft{S^{\textup{L}}}$
|
||
\end_inset
|
||
|
||
decays fast enough.
|
||
(The same idea lies behind the Ewald summation in electrostatics.) Using
|
||
the linearity of Fourier transform and formulae
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:W definition"
|
||
|
||
\end_inset
|
||
|
||
and legendre
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:W sum in reciprocal space"
|
||
|
||
\end_inset
|
||
|
||
, the operator
|
||
\begin_inset Formula $W_{\alpha\beta}$
|
||
\end_inset
|
||
|
||
can then be re-expressed as
|
||
\begin_inset Formula
|
||
\begin{eqnarray}
|
||
W_{\alpha\beta}\left(\vect k\right) & = & W_{\alpha\beta}^{\textup{S}}\left(\vect k\right)+W_{\alpha\beta}^{\textup{L}}\left(\vect k\right)\nonumber \\
|
||
W_{\alpha\beta}^{\textup{S}}\left(\vect k\right) & = & \sum_{\vect R\in\basis u\ints^{d}}S^{\textup{S}}(\vect 0\leftarrow\vect R+\vect r_{\beta}-\vect r_{\alpha})e^{i\vect k\cdot\vect R}\label{eq:W Short definition}\\
|
||
W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\basis u}\right|}{\left(2\pi\right)^{\frac{d}{2}}}\sum_{\vect K\in\recb{\basis u}\ints^{d}}\left(\uaft{S^{\textup{L}}(\vect{\bullet}-\vect r_{\beta}+\vect r_{\alpha}\leftarrow\vect 0)}\right)\left(\vect k-\vect K\right)\label{eq:W Long definition}
|
||
\end{eqnarray}
|
||
|
||
\end_inset
|
||
|
||
where both sums should converge nicely.
|
||
\end_layout
|
||
|
||
\end_body
|
||
\end_document
|