qpms/notes/radpower.lyx

415 lines
7.8 KiB
Plaintext

#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass article
\use_default_options true
\begin_modules
theorems-ams
\end_modules
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman TeX Gyre Pagella
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts true
\font_sc false
\font_osf true
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format pdf4
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize 10
\spacing single
\use_hyperref true
\pdf_title "Sähköpajan päiväkirja"
\pdf_author "Marek Nečada"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize a4paper
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1cm
\topmargin 5mm
\rightmargin 1cm
\bottommargin 1cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\uoft}[1]{\mathfrak{F}#1}
\end_inset
\begin_inset FormulaMacro
\newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
\end_inset
\begin_inset FormulaMacro
\newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vect}[1]{\mathbf{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ud}{\mathrm{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\basis}[1]{\mathfrak{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\dc}[1]{Ш_{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\rec}[1]{#1^{-1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\recb}[1]{#1^{\widehat{-1}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ints}{\mathbb{Z}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\nats}{\mathbb{N}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\reals}{\mathbb{R}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ush}[2]{Y_{#1,#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\hgfr}{\mathbf{F}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ph}{\mathrm{ph}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\kor}[1]{\underline{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\koru}[1]{\overline{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\hgf}{F}
\end_inset
\end_layout
\begin_layout Title
Radiation power balance in nanoparticles
\end_layout
\begin_layout Author
Marek Nečada
\end_layout
\begin_layout Abstract
This memo deals with the formulae for radiation transfer, absorption, extinction
for single particle and composite system of several nanoparticles.
I also derive some natural conditions on
\begin_inset Formula $T$
\end_inset
-matrix elements.
\end_layout
\begin_layout Section*
Conventions
\end_layout
\begin_layout Standard
If not stated otherwise, Kristensson's notation and normalisation conventions
are used in this memo.
\end_layout
\begin_layout Section
Single particle
\end_layout
\begin_layout Subsection
Power transfer formula, absorption
\end_layout
\begin_layout Standard
The power radiated away by a linear scatterer at fixed harmonic frequency
is according to [Kris (2.28)]
\begin_inset Formula
\[
P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)
\]
\end_inset
where
\begin_inset Formula $n$
\end_inset
is a multiindex describing the type (E/M) and multipole degree and order
of the wave,
\begin_inset Formula $f_{n}$
\end_inset
is the coefficient corresponding to
\series bold
outgoing
\series default
(Hankel function based) and
\begin_inset Formula $a_{n}$
\end_inset
to
\series bold
regular
\series default
(first-order Bessel function based) waves.
\end_layout
\begin_layout Standard
This is minus the power absorbed by the nanoparticle, and unless the particle
has some gain mechanism, this cannot be positive.
The basic condition for a physical nanoparticle therefore reads
\begin_inset Formula
\begin{equation}
P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)\le0.\label{eq:Absorption is never negative}
\end{equation}
\end_inset
\end_layout
\begin_layout Subsection
Conditions on the
\begin_inset Formula $T$
\end_inset
-matrix
\end_layout
\begin_layout Standard
For a linear scatterer, the outgoing and regular wave coefficients are connected
via the
\begin_inset Formula $T$
\end_inset
-matrix
\begin_inset Formula
\begin{equation}
f_{n}=\sum_{n'}T_{nn'}a_{n'}.\label{eq:T-matrix definition}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Inequality
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative"
\end_inset
enables us to derive some conditions on the
\begin_inset Formula $T$
\end_inset
-matrix.
Let the particle be driven by a wave of a single type
\begin_inset Formula $m$
\end_inset
only so the coefficients of all other components of the driving field are
zero,
\begin_inset Formula $a_{n}=\delta_{nm}$
\end_inset
.
From
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative"
\end_inset
and
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:T-matrix definition"
\end_inset
we get
\begin_inset Formula
\begin{eqnarray}
P & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}a_{n'}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}a_{n'}a_{n}^{*}\right)\right)\nonumber \\
& = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}\delta_{n'm}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}\delta_{n'm}\delta_{nm}\right)\right)\nonumber \\
& = & \frac{1}{2}\left(\left|\sum_{n}T_{nm}\right|^{2}+\Re T_{mm}\right)\le0\qquad\forall m,\label{eq:Absorption is never negative for single wave type}
\end{eqnarray}
\end_inset
a condition that should be checked e.g.
for the
\begin_inset Formula $T$
\end_inset
-matrices generated by SCUFF-EM.
\end_layout
\begin_layout Remark
For a particle of spherical symmetry
\begin_inset Formula $T_{nm}\propto\delta_{nm}$
\end_inset
, so
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative for single wave type"
\end_inset
gives
\begin_inset Formula $-\Re T_{mm}\ge\left|T_{mm}\right|^{2}$
\end_inset
which in turn implies
\begin_inset Formula $\left|T_{mm}\right|<1$
\end_inset
.
(Any similar conclusion for the general case?)
\end_layout
\begin_layout Problem
Obviously,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative for single wave type"
\end_inset
is the consequence of the condition
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative"
\end_inset
.
But is
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative"
\end_inset
always true if
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Absorption is never negative for single wave type"
\end_inset
satisfied?
\end_layout
\end_body
\end_document