qpms/notes/mathjax_newcommands.js

73 lines
3.9 KiB
JavaScript

MathJax.Hub.Config({
TeX: {
Macros: {
// Abs: ['\\left\\lvert #2 \\right\\rvert_{\\text{#1}}', 2, ""] // optional arg. example
// from https://stackoverflow.com/questions/24628668/how-to-define-custom-macros-in-mathjax
vect: ["{\\mathbf{#1}}",1],
abs: ["{\\left|{#1}\\right|}",1],
ud: "{\\mathrm{d}}",
pr: ["{\\left({#1}\\right)}", 1], // parentheses to save typing
uvec: ["{\\mathbf{\\hat{#1}}}", 1],
vsh: "{\\mathbf{A}}", // vector spherical harmonic, general
vshD: "\\mathbf{A}^\\dagger", // dual vector spherical harmonic, general
vshrad: "{\\mathbf{A}_3}", // vector spherical harmonic radial, general
vshrot: "{\\mathbf{A}_1}", // vector spherical harmonic "rotational", general
vshgrad: "{\\mathbf{A}_2}", // vector spherical harmonic "gradiental", general
vshradD: "{\\mathbf{A}_3}^\\dagger}", // dual vector spherical harmonic radial, general
vshrotD: "{\\mathbf{A}_1^\\dagger}", // dual vector spherical harmonic "rotational", general
vshgradD: "{\\mathbf{A}_2^\\dagger}", // dual vector spherical harmonic "gradiental", general
wfe: "{\\mathbf{N}}", // Electric wave general
wfm: "{\\mathbf{M}}", // Magnetic wave general
sphbes: "{z}", // General spherical Bessel fun
rawLeg: ["{\\mathfrak{P}_{#1}^{#2}}", 2], // "Canonical" associated Legendre polynomial without C.S. phase
rawFer: ["\\rawLeg{#1}{#2}", 2], // "Canonical" associated Legendre polynomial without C.S. phase
dlmfLeg: ["{P_{#1}^{#2}}", 2], // Associated Legendre function as in DLMF (14.3.6)
dlmfFer: ["{\\mathsf{P}_{#1}^{#2}}", 2], // Ferrers Function as in DLMF (14.3.1)
dlmfYc: ["{Y_{{#1},{#2}}}", 2], // Complex spherical harmonics as in DLMF (14.30.1)
dlmfYrUnnorm: ["{Y_{#1}^{#2}}", 2], // Real spherical harmonics as in DLMF (14.30.2)
Fer: ["{{P_{\\mathrm{#1}}}_{#2}^{#3}}", 3, ""], // Legendre / Ferrers function
spharm: ["{{Y_{\\mathrm{#1}}}_{#2}^{#3}}", 3, ""], // Spherical harmonics
spharmR: ["{{Y_{\\mathrm{#1}}}_{\\mathrm{#1}{#2}{#3}}", 4, ""], // Spherical harmonics
csphase: "\\mathsf{C_{CS}}", // Condon-Shortley phase
tropSrr: ["{{S^\\mathrm{#1}}\\pr{{#2} \\leftarrow {#3}}}", 3, ""], // Translation operator singular
tropRrr: ["{{R^\\mathrm{#1}}\\pr{{#2} \\leftarrow {#3}}}", 3, ""], // Translation operator regular
// Kristensson's VSWFs, complex version (2014 notes)
wfkc: "{\\vect{y}}", // any wave
wfkcreg: "{\\vect{v}}", // regular wave
wfkcout: "{\\vect{u}}", // outgoing wave
wckcreg: "{a}", // regular wave coeff
wckcout: "{f}", // outgoing wave coeff
// Kristensson's VSWFs, real version (2014 book)
wfkr: "{\\vect{y}_{\\mathrm{r}}}", // any wave
wfkrreg: "{\\vect{v}_{\\mathrm{r}}}", // regular wave
wfkrout: "{\\vect{u}_{\\mathrm{r}}}", // outgoing wave
wckrreg: "{a}", // regular wave coeff
wckrout: "{f}", // outgoing wave coeff
// Taylor's VSWFs
wfmt: "{\\widetilde{\\vect{M}}}",
wfet: "{\\widetilde{\\vect{N}}}",
wfmtreg: "{\\widetilde{\\vect{M}}^{(1)}}", // regular magnetic wave
wfetreg: "{\\widetilde{\\vect{N}}^{(1)}}", // regular electric wave
wfmtout: "{\\widetilde{\\vect{M}}^{(3)}}", // outgoing magnetic wave
wfetout: "{\\widetilde{\\vect{N}}^{(3)}}", // outgoing electric wave
wcmtreg: "{q}", // regular magnetic wave coeff
wcetreg: "{p}", // regular electric wave coeff
wcmtout: "{b}", // outgoing magnetic wave coeff
wcetout: "{a}", // outgoing electric wave coeff
// Reid's VSWFs
wfr: "\\mathbf{\\mathcal{W}}",
wfrreg: "\\mathbf{\\mathcal{W}}^{\\mathrm{reg}}", // regular wave
wfrout: "\\mathbf{\\mathcal{W}}^{\\mathrm{out}}", // outgoing wave
wcrreg: "C^\\mathrm{inc}", // regular wave coeff
wcrout: "C^\\mathrm{scat}", // outgoing wave coeff
}
}
});