189 lines
7.0 KiB
C
189 lines
7.0 KiB
C
// c99 -ggdb -Wall -I ../ ewalds.c ../qpms/ewald.c ../qpms/ewaldgammas.c ../qpms/lattices2d.c -lgsl -lm -lblas
|
|
|
|
// implementation of the [LT(4.16)] test
|
|
#include <math.h>
|
|
#define M_SQRTPI 1.7724538509055160272981674833411452
|
|
#include <qpms/ewald.h>
|
|
#include <qpms/tiny_inlines.h>
|
|
#include <qpms/indexing.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <float.h>
|
|
#include <gsl/gsl_sf_legendre.h>
|
|
typedef struct ewaldtest_triang_params {
|
|
qpms_l_t lMax;
|
|
point2d beta;
|
|
double k;
|
|
double a;
|
|
double eta;
|
|
double maxR;
|
|
double maxK;
|
|
double csphase;
|
|
TriangularLatticeOrientation orientation;
|
|
} ewaldtest_triang_params;
|
|
|
|
typedef struct ewaldtest_triang_results {
|
|
ewaldtest_triang_params p;
|
|
complex double *sigmas_short,
|
|
*sigmas_long,
|
|
sigma0,
|
|
*sigmas_total;
|
|
double *err_sigmas_short,
|
|
*err_sigmas_long,
|
|
err_sigma0,
|
|
*err_sigmas_total;
|
|
complex double *regsigmas_416;
|
|
} ewaldtest_triang_results;
|
|
|
|
|
|
ewaldtest_triang_params paramslist[] = {
|
|
{ 3, {1.1, 0.23}, 2.3, 0.97, 0.5, 20, 20, 1., TRIANGULAR_HORIZONTAL},
|
|
{ 3, {1.1, 0.23}, 2.3, 0.97, 0.5, 20, 20, 1., TRIANGULAR_VERTICAL},
|
|
{ 3, {1.1, 0.23}, 2.3, 0.97, 0.5, 30, 30, 1., TRIANGULAR_VERTICAL},
|
|
{ 3, {1.1, 0.23}, 2.3, 0.97, 0.9, 30, 30, 1., TRIANGULAR_VERTICAL},
|
|
{ 3, {1.1, 0.23}, 2.3, 0.97, 1.3, 30, 30, 1., TRIANGULAR_VERTICAL},
|
|
{ 3, {1.1, 0.23}, 2.3, 0.97, 1.9, 30, 30, 1., TRIANGULAR_VERTICAL},
|
|
// end:
|
|
// { 0, {0, 0}, 0, 0, 0, 0, 0, 0, 0}
|
|
};
|
|
|
|
void ewaldtest_triang_results_free(ewaldtest_triang_results *r) {
|
|
free(r->sigmas_short);
|
|
free(r->sigmas_long);
|
|
free(r->sigmas_total);
|
|
free(r->err_sigmas_long);
|
|
free(r->err_sigmas_total);
|
|
free(r->err_sigmas_short);
|
|
free(r->regsigmas_416);
|
|
free(r);
|
|
}
|
|
|
|
ewaldtest_triang_results *ewaldtest_triang(const ewaldtest_triang_params p);
|
|
|
|
int main() {
|
|
for (size_t i = 0; i < sizeof(paramslist)/sizeof(ewaldtest_triang_params); ++i) {
|
|
ewaldtest_triang_params p = paramslist[i];
|
|
ewaldtest_triang_results *r = ewaldtest_triang(p);
|
|
// TODO print per-test header here
|
|
printf("===============================\n");
|
|
printf("Kmax = %g, Rmax = %g, lMax = %d, eta = %g, k = %g, beta = (%g,%g)\n",
|
|
p.maxK, p.maxR, p.lMax, p.eta, p.k, p.beta.x, p.beta.y);
|
|
|
|
for (qpms_l_t n = 0; n <= p.lMax; ++n) {
|
|
for (qpms_m_t m = -n; m <= n; ++m){
|
|
qpms_y_t y = qpms_mn2y_sc(m,n);
|
|
qpms_y_t y_conj = qpms_mn2y_sc(-m,n);
|
|
// y n m sigma_total (err), regsigmas_416 regsigmas_415_recon
|
|
printf("%zd %d %d: T:%.16g%+.16gj(%.3g) S:%.16g%+.16gj(%.3g) L:%.16g%+.16gj(%.3g) \n| predict %.16g%+.16gj \n| actual %.16g%+.16gj\n",
|
|
y, n, m, creal(r->sigmas_total[y]), cimag(r->sigmas_total[y]),
|
|
r->err_sigmas_total[y],
|
|
creal(r->sigmas_long[y]), cimag(r->sigmas_total[y]),
|
|
r->err_sigmas_long[y],
|
|
creal(r->sigmas_short[y]), cimag(r->sigmas_short[y]),
|
|
r->err_sigmas_short[y],
|
|
creal(r->regsigmas_416[y]), cimag(r->regsigmas_416[y]),
|
|
creal(r->sigmas_total[y])+creal(r->sigmas_total[y_conj]),
|
|
cimag(r->sigmas_total[y])-cimag(r->sigmas_total[y_conj])
|
|
);
|
|
}
|
|
}
|
|
ewaldtest_triang_results_free(r);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
ewaldtest_triang_results *ewaldtest_triang(const ewaldtest_triang_params p) {
|
|
const double a = p.a; //const double a = p.h * sqrt(3);
|
|
|
|
const double A = sqrt(3) * a * a / 2.; // unit cell size
|
|
const double K_len = 4*M_PI/a/sqrt(3); // reciprocal vector length
|
|
|
|
|
|
ewaldtest_triang_results *results = malloc(sizeof(ewaldtest_triang_results));
|
|
results->p = p;
|
|
|
|
triangular_lattice_gen_t *Rlg = triangular_lattice_gen_init(a, p.orientation, false, 0); // N.B. orig is not included (not directly usable for the honeycomb lattice)
|
|
triangular_lattice_gen_extend_to_r(Rlg, p.maxR + a);
|
|
triangular_lattice_gen_t *Klg = triangular_lattice_gen_init(K_len, reverseTriangularLatticeOrientation(p.orientation), true, 0);
|
|
triangular_lattice_gen_extend_to_r(Klg, p.maxK + K_len);
|
|
|
|
point2d *Rpoints = Rlg->ps.base, *Kpoints = Klg->ps.base;
|
|
size_t nR = Rlg->ps.r_offsets[Rlg->ps.nrs],
|
|
nK = Klg->ps.r_offsets[Klg->ps.nrs];
|
|
|
|
qpms_y_t nelem_sc = qpms_lMax2nelem_sc(p.lMax);
|
|
|
|
results->sigmas_short = malloc(sizeof(complex double)*nelem_sc);
|
|
results->sigmas_long = malloc(sizeof(complex double)*nelem_sc);
|
|
results->sigmas_total = malloc(sizeof(complex double)*nelem_sc);
|
|
results->err_sigmas_short = malloc(sizeof(double)*nelem_sc);
|
|
results->err_sigmas_long = malloc(sizeof(double)*nelem_sc);
|
|
results->err_sigmas_total = malloc(sizeof(double)*nelem_sc);
|
|
|
|
qpms_ewald32_constants_t *c = qpms_ewald32_constants_init(p.lMax, p.csphase);
|
|
|
|
points2d_rordered_t *Kpoints_plus_beta = points2d_rordered_shift(&(Klg->ps), p.beta,
|
|
8*DBL_EPSILON, 8*DBL_EPSILON);
|
|
|
|
point2d particle_shift = {0,0}; // TODO make this a parameter
|
|
|
|
if (0!=ewald32_sigma_long_shiftedpoints(results->sigmas_long,
|
|
results->err_sigmas_long, c, p.eta, p.k, A,
|
|
nK, Kpoints_plus_beta->base,
|
|
//p.beta,
|
|
particle_shift))
|
|
abort();
|
|
if (0!=ewald32_sigma_short_shiftedpoints(
|
|
results->sigmas_short, results->err_sigmas_short, c,
|
|
p.eta, p.k,
|
|
nR, Rpoints, p.beta, particle_shift))
|
|
abort();
|
|
if (0!=ewald32_sigma0(&(results->sigma0), &(results->err_sigma0), c, p.eta, p.k))
|
|
abort();
|
|
for(qpms_y_t y = 0; y < nelem_sc; ++y) {
|
|
results->sigmas_total[y] = results->sigmas_short[y] + results->sigmas_long[y];
|
|
results->err_sigmas_total[y] = results->err_sigmas_short[y] + results->err_sigmas_long[y];
|
|
}
|
|
results->sigmas_total[0] += results->sigma0;
|
|
results->err_sigmas_total[0] += results->err_sigma0;
|
|
|
|
// Now calculate the reference values [LT(4.16)]
|
|
results->regsigmas_416 = calloc(nelem_sc, sizeof(complex double));
|
|
results->regsigmas_416[0] = -1/M_SQRTPI;
|
|
|
|
{
|
|
double legendres[gsl_sf_legendre_array_n(p.lMax)];
|
|
points2d_rordered_t sel =
|
|
points2d_rordered_annulus(Kpoints_plus_beta, 0, true, p.k, false);
|
|
point2d *beta_pq_lessthan_k = sel.base + sel.r_offsets[0];
|
|
size_t beta_pq_lessthan_k_count = sel.r_offsets[sel.nrs] - sel.r_offsets[0];
|
|
for(size_t i = 0; i < beta_pq_lessthan_k_count; ++i) {
|
|
point2d beta_pq = beta_pq_lessthan_k[i];
|
|
double rbeta_pq = cart2norm(beta_pq);
|
|
double arg_pq = atan2(beta_pq.y, beta_pq.x);
|
|
double denom = sqrt(p.k*p.k - rbeta_pq*rbeta_pq);
|
|
if( gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,
|
|
p.lMax, denom/p.k, p.csphase, legendres) != 0)
|
|
abort();
|
|
for (qpms_y_t y = 0; y < nelem_sc; ++y) {
|
|
qpms_l_t n; qpms_m_t m;
|
|
qpms_y2mn_sc_p(y, &m, &n);
|
|
if ((m+n)%2 != 0)
|
|
continue;
|
|
complex double eimf = cexp(I*m*arg_pq);
|
|
results->regsigmas_416[y] +=
|
|
4*M_PI*ipow(n)/p.k/A
|
|
* eimf * legendres[gsl_sf_legendre_array_index(n,m)]
|
|
/ denom;
|
|
}
|
|
}
|
|
}
|
|
|
|
points2d_rordered_free(Kpoints_plus_beta);
|
|
qpms_ewald32_constants_free(c);
|
|
triangular_lattice_gen_free(Klg);
|
|
triangular_lattice_gen_free(Rlg);
|
|
return results;
|
|
}
|