263 lines
8.6 KiB
Python
263 lines
8.6 KiB
Python
"""
|
|
These functions are mostly deprecated by the C counterparts from lattices.h.
|
|
This file is still kept for reference, but might be removed in the future.
|
|
"""
|
|
import numpy as np
|
|
from enum import Enum
|
|
from math import floor
|
|
|
|
nx = None
|
|
|
|
class LatticeType(Enum):
|
|
"""
|
|
All the five Bravais lattices in 2D
|
|
"""
|
|
OBLIQUE=1
|
|
RECTANGULAR=2
|
|
SQUARE=4
|
|
RHOMBIC=5
|
|
EQUILATERAL_TRIANGULAR=3
|
|
RIGHT_ISOSCELES=SQUARE
|
|
PARALLELOGRAMMIC=OBLIQUE
|
|
CENTERED_RHOMBIC=RECTANGULAR
|
|
RIGHT_TRIANGULAR=RECTANGULAR
|
|
CENTERED_RECTANGULAR=RHOMBIC
|
|
ISOSCELE_TRIANGULAR=RHOMBIC
|
|
RIGHT_ISOSCELE_TRIANGULAR=SQUARE
|
|
HEXAGONAL=EQUILATERAL_TRIANGULAR
|
|
|
|
def reduceBasisSingle(b1, b2):
|
|
"""
|
|
Lagrange-Gauss reduction of a 2D basis.
|
|
cf. https://www.math.auckland.ac.nz/~sgal018/crypto-book/ch17.pdf
|
|
inputs and outputs are (2,)-shaped numpy arrays
|
|
The output shall satisfy |b1| <= |b2| <= |b2 - b1|
|
|
TODO doc
|
|
|
|
TODO perhaps have the (on-demand?) guarantee of obtuse angle between b1, b2?
|
|
TODO possibility of returning the (in-order, no-obtuse angles) b as well?
|
|
"""
|
|
b1 = np.array(b1)
|
|
b2 = np.array(b2)
|
|
if b1.shape != (2,) or b2.shape != (2,):
|
|
raise ValueError('Shape of b1 and b2 must be (2,)')
|
|
B1 = np.sum(b1 * b1, axis=-1, keepdims=True)
|
|
mu = np.sum(b1 * b2, axis=-1, keepdims=True) / B1
|
|
b2 = b2 - np.rint(mu) * b1
|
|
B2 = np.sum(b2 * b2, axis=-1, keepdims=True)
|
|
while(np.any(B2 < B1)):
|
|
b2t = b1
|
|
b1 = b2
|
|
b2 = b2t
|
|
B1 = B2
|
|
mu = np.sum(b1 * b2, axis=-1, keepdims=True) / B1
|
|
b2 = b2 - np.rint(mu) * b1
|
|
B2 = np.sum(b2*b2, axis=-1, keepdims=True)
|
|
return np.array((b1,b2))
|
|
|
|
def shortestBase3(b1, b2):
|
|
'''
|
|
returns the "ordered shortest triple" of base vectors (each pair from
|
|
the triple is a base) and there may not be obtuse angle between b1, b2
|
|
and between b2, b3
|
|
'''
|
|
b1, b2 = reduceBasisSingle(b1,b2)
|
|
if is_obtuse(b1, b2, tolerance=0):
|
|
b3 = b2
|
|
b2 = b2 + b1
|
|
else:
|
|
b3 = b2 - b1
|
|
return (b1, b2, b3)
|
|
|
|
def shortestBase46(b1, b2, tolerance=1e-13):
|
|
b1, b2 = reduceBasisSingle(b1,b2)
|
|
b1s = np.sum(b1 ** 2)
|
|
b2s = np.sum(b2 ** 2)
|
|
b3 = b2 - b1
|
|
b3s = np.sum(b3 ** 2)
|
|
eps = tolerance * (b2s + b1s)
|
|
if abs(b3s - b2s - b1s) < eps:
|
|
return(b1, b2, -b1, -b2)
|
|
else:
|
|
if b3s - b2s - b1s > eps: #obtuse
|
|
b3 = b2
|
|
b2 = b2 + b1
|
|
return (b1, b2, b3, -b1, -b2, -b3)
|
|
|
|
|
|
def is_obtuse(b1, b2, tolerance=1e-13):
|
|
b1s = np.sum(b1 ** 2)
|
|
b2s = np.sum(b2 ** 2)
|
|
b3 = b2 - b1
|
|
b3s = np.sum(b3 ** 2)
|
|
eps = tolerance * (b2s + b1s)
|
|
return (b3s - b2s - b1s > eps)
|
|
|
|
def classifyLatticeSingle(b1, b2, tolerance=1e-13):
|
|
"""
|
|
Given two basis vectors, returns 2D Bravais lattice type.
|
|
Tolerance is relative.
|
|
TODO doc
|
|
"""
|
|
b1, b2 = reduceBasisSingle(b1, b2)
|
|
b1s = np.sum(b1 ** 2)
|
|
b2s = np.sum(b2 ** 2)
|
|
b3 = b2 - b1
|
|
b3s = np.sum(b3 ** 2)
|
|
eps = tolerance * (b2s + b1s)
|
|
# Avoid obtuse angle between b1 and b2. TODO This should be yet thoroughly tested.
|
|
# TODO use is_obtuse here?
|
|
if b3s - b2s - b1s > eps:
|
|
b3 = b2
|
|
b2 = b2 + b1
|
|
# N. B. now the assumption |b3| >= |b2| is no longer valid
|
|
#b3 = b2 - b1
|
|
b2s = np.sum(b2 ** 2)
|
|
b3s = np.sum(b3 ** 2)
|
|
if abs(b2s - b1s) < eps or abs(b2s - b3s) < eps: # isoscele
|
|
if abs(b3s - b1s) < eps:
|
|
return LatticeType.EQUILATERAL_TRIANGULAR
|
|
elif abs(b3s - 2 * b1s) < eps:
|
|
return LatticeType.SQUARE
|
|
else:
|
|
return LatticeType.RHOMBIC
|
|
elif abs(b3s - b2s - b1s) < eps:
|
|
return LatticeType.RECTANGULAR
|
|
else:
|
|
return LatticeType.OBLIQUE
|
|
|
|
def range2D(maxN, mini=1, minj=0, minN = 0):
|
|
"""
|
|
"Triangle indices"
|
|
Generates pairs of non-negative integer indices (i, j) such that
|
|
minN ≤ i + j ≤ maxN, i ≥ mini, j ≥ minj.
|
|
TODO doc and possibly different orderings
|
|
"""
|
|
for maxn in range(min(mini, minj, minN), floor(maxN+1)): # i + j == maxn
|
|
for i in range(mini, maxn + 1):
|
|
yield (i, maxn - i)
|
|
|
|
|
|
def generateLattice(b1, b2, maxlayer=5, include_origin=False, order='leaves'):
|
|
bvs = shortestBase46(b1, b2)
|
|
cc = len(bvs) # "corner count"
|
|
|
|
if order == 'leaves':
|
|
indices = np.array(list(range2D(maxlayer)))
|
|
ia = indices[:,0]
|
|
ib = indices[:,1]
|
|
cc = len(bvs) # 4 for square/rec,
|
|
leaves = list()
|
|
if include_origin: leaves.append(np.array([[0,0]]))
|
|
for c in range(cc):
|
|
ba = bvs[c]
|
|
bb = bvs[(c+1)%cc]
|
|
leaves.append(ia[:,nx]*ba + ib[:,nx]*bb)
|
|
return np.concatenate(leaves)
|
|
else:
|
|
raise ValueError('Lattice point order not implemented: ', order)
|
|
|
|
def generateLatticeDisk(b1, b2, r, include_origin=False, order='leaves'):
|
|
b1, b2 = reduceBasisSingle(b1,b2)
|
|
blen = np.linalg.norm(b1, ord=2)
|
|
maxlayer = 2*r/blen # FIXME kanon na vrabce? Nestačí odmocnina ze 2?
|
|
points = generateLattice(b1,b2, maxlayer=maxlayer, include_origin=include_origin, order=order)
|
|
mask = (np.linalg.norm(points, axis=-1, ord=2) <= r)
|
|
return points[mask]
|
|
|
|
def cellCornersWS(b1, b2,):
|
|
"""
|
|
Given basis vectors, returns the corners of the Wigner-Seitz unit cell
|
|
(w1, w2, -w1, w2) for rectangular and square lattice or
|
|
(w1, w2, w3, -w1, -w2, -w3) otherwise
|
|
"""
|
|
def solveWS(v1, v2):
|
|
v1x = v1[0]
|
|
v1y = v1[1]
|
|
v2x = v2[0]
|
|
v2y = v2[1]
|
|
lsm = ((-v1y, v2y), (v1x, -v2x))
|
|
rs = ((v1x-v2x)/2, (v1y - v2y)/2)
|
|
t = np.linalg.solve(lsm, rs)
|
|
return np.array(v1)/2 + t[0]*np.array((v1y, -v1x))
|
|
b1, b2 = reduceBasisSingle(b1, b2)
|
|
latticeType = classifyLatticeSingle(b1, b2)
|
|
if latticeType is LatticeType.RECTANGULAR or latticeType is LatticeType.SQUARE:
|
|
return np.array( (
|
|
(+b1+b2),
|
|
(+b2-b1),
|
|
(-b1-b2),
|
|
(-b2+b1),
|
|
)) / 2
|
|
else:
|
|
bvs = shortestBase46(b1,b2,tolerance=0)
|
|
return np.array([solveWS(bvs[i], bvs[(i+1)%6]) for i in range(6)])
|
|
|
|
def cutWS(points, b1, b2, scale=1., tolerance=1e-13):
|
|
"""
|
|
From given points, return only those that are inside (or on the edge of)
|
|
the Wigner-Seitz cell of a (scale*b1, scale*b2)-based lattice.
|
|
"""
|
|
# TODO check input dimensions?
|
|
bvs = shortestBase46(b1, b2)
|
|
points = np.array(points)
|
|
for b in bvs:
|
|
mask = (np.tensordot(points, b, axes=(-1, 0)) <= (scale * (1+tolerance) / 2) *np.linalg.norm(b, ord=2)**2 )
|
|
points = points[mask]
|
|
return points
|
|
|
|
def filledWS(b1, b2, density=10, scale=1.):
|
|
"""
|
|
TODO doc
|
|
TODO more intelligent generation, anisotropy balancing etc.
|
|
"""
|
|
points = generateLattice(b1,b2,maxlayer=density*scale, include_origin=True)
|
|
points = cutWS(points/density, np.array(b1)*scale, np.array(b2)*scale)
|
|
return points
|
|
|
|
|
|
def reciprocalBasis1(*pargs):
|
|
a = reduceBasisSingle(*pargs)
|
|
return np.linalg.inv(a).T
|
|
|
|
def reciprocalBasis2pi(*pargs):
|
|
return 2*np.pi*reciprocalBasis1(*pargs)
|
|
|
|
# TODO fill it with "points from reciprocal space" instead
|
|
def filledWS2(b1,b2, density=10, scale=1.):
|
|
b1, b2 = reduceBasisSingle(b1,b2)
|
|
b1r, b2r = reciprocalBasis2pi(b1,b2)
|
|
b1l = np.linalg.norm(b1, ord=2)
|
|
b2l = np.linalg.norm(b2, ord=2)
|
|
b1rl = np.linalg.norm(b1r, ord=2)
|
|
b2rl = np.linalg.norm(b2r, ord=2)
|
|
# Black magick. Think later.™ Really. FIXME
|
|
sicher_ratio = np.maximum(b1rl/b2rl, b2rl/b1rl) * np.maximum(b1l/b2l, b2l/b1l) # This really has to be adjusted
|
|
points = generateLattice(b1r,b2r,maxlayer=density*scale*sicher_ratio, include_origin=True)
|
|
points = cutWS(points*b1l/b1rl/density, b1*scale, b2*scale)
|
|
return points
|
|
|
|
|
|
def change_basis(srcbasis, destbasis, srccoords, srccoordsaxis=-1, lattice=True):
|
|
srcbasis = np.array(srcbasis)
|
|
destbasis = np.array(destbasis)
|
|
trmatrix = np.dot(np.linalg.inv(np.transpose(destbasis)), np.transpose(srcbasis))
|
|
if lattice: # if srcbasis and destbasis are two bases of the same lattice, its elements are ints
|
|
otrmatrix = trmatrix
|
|
trmatrix = np.round(trmatrix)
|
|
if not np.all(np.isclose(trmatrix, otrmatrix)):
|
|
raise ValueError("Given srcbasis and destbasis are not bases"
|
|
"of the same lattice", srcbasis, destbasis, trmatrix-otrmatrix)
|
|
destcoords = np.tensordot(srccoords, trmatrix, axes=(srccoordsaxis, -1))
|
|
return destcoords
|
|
|
|
"""
|
|
TODO
|
|
====
|
|
|
|
- DOC!!!!!
|
|
- (nehoří) výhledově pořešit problém „hodně anisotropních“ mřížek (tj. kompensovat
|
|
rozdílné délky základních vektorů).
|
|
|
|
"""
|