qpms/notes/ewald-calculations.lyx

733 lines
42 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language finnish
\language_package default
\inputencoding auto
\fontencoding global
\font_roman TeX Gyre Pagella
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts true
\font_sc false
\font_osf true
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format pdf4
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize 10
\spacing single
\use_hyperref true
\pdf_title "Sähköpajan päiväkirja"
\pdf_author "Marek Nečada"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize a3paper
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1cm
\topmargin 5mm
\rightmargin 1cm
\bottommargin 1cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language swedish
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\lang english
\begin_inset FormulaMacro
\newcommand{\uoft}[1]{\mathfrak{F}#1}
\end_inset
\begin_inset FormulaMacro
\newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
\end_inset
\begin_inset FormulaMacro
\newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vect}[1]{\mathbf{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ud}{\mathrm{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\basis}[1]{\mathfrak{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\dc}[1]{Ш_{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\rec}[1]{#1^{-1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\recb}[1]{#1^{\widehat{-1}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ints}{\mathbb{Z}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\nats}{\mathbb{N}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\reals}{\mathbb{R}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ush}[2]{Y_{#1,#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\hgfr}{\mathbf{F}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ph}{\mathrm{ph}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\kor}[1]{\underline{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\koru}[1]{\overline{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\hgf}{F}
\end_inset
Let
\end_layout
\begin_layout Standard
\lang english
\begin_inset Formula
\begin{eqnarray*}
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
\mbox{(D15.2.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}Γ\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\sum_{s=0}^{\infty}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{3-q+n}{2}\right)_{s}}{Γ(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s},\quad\left|\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right|<1\\
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
\lang english
\begin_inset Formula
\begin{eqnarray*}
\mbox{OK}\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
\mbox{OK(D15.8.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}(\\
& & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{Γ\left(\frac{3-q+n}{2}\right)\text{Γ}\left(1+n-\frac{2-q+n}{2}\right)}\hgfr\left(\begin{array}{c}
\frac{2-q+n}{2},\frac{2-q+n}{2}-\left(1+n\right)+1\\
1/2
\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\
& - & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(1+n-\frac{3-q+n}{2}\right)}\hgfr\left(\begin{array}{c}
\frac{3-q+n}{2},\frac{3-q+n}{2}-\left(1+n\right)+1\\
3/2
\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\
\mbox{OK20} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi(\\
& & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\hgfr\left(\begin{array}{c}
\frac{2-q+n}{2},\frac{2-q-n}{2}\\
1/2
\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\
& - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\hgfr\left(\begin{array}{c}
\frac{3-q+n}{2},\frac{3-q-n}{2}\\
3/2
\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\
\mbox{(D15.2.2)OK3a,b} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi\sum_{s=0}^{\infty}(\\
& & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{1}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s}\\
& - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s})\\
\mbox{OK4a} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{k^{n}}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{2-q+n}}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\
& & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}k^{-2+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{2-q+n}+2s}\\
& - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}k^{-3+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{3-q+n}+2s})\\
\mbox{OK4b} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\
& & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\kor{k^{-2+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{2s}}\\
& - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\kor{k^{-3+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{1+2s}})\\
\mbox{OK4c} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\\
& & \times\left(\underbrace{\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}}_{\equiv c_{q,n,s}}-\underbrace{\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}}_{č_{q,n,s}}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\kor{\left(\sigma c-ik_{0}\right)^{2s}}c_{q,n,s}-\frac{\left(\sigma c-ik_{0}\right)^{2s+1}}{k}č_{q,n,s}\right)\\
\mbox{(binom.)} & = & \kor{\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(c_{q,n,s}\sum_{t=0}^{2s}\binom{2s}{t}\left(\kor{\sigma}c\right)^{t}\left(-ik_{0}\right)^{2s-t}-č_{q,n,s}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\left(\kor{\sigma}c\right)^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
\mbox{(conds?)} & = & \frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(c_{q,n,s}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
\kappa
\end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-č_{q,n,s}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\begin{Bmatrix}t\\
\kappa
\end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)
\end{eqnarray*}
\end_inset
now the Stirling number of the 2nd kind
\begin_inset Formula $\begin{Bmatrix}t\\
\kappa
\end{Bmatrix}=0$
\end_inset
if
\begin_inset Formula $\kappa>t$
\end_inset
.
\end_layout
\begin_layout Standard
\lang english
What about the gamma fn on the left? Using DLMF 5.5.5, which says
\begin_inset Formula $Γ(2z)=\pi^{-1/2}2^{2z-1}\text{Γ}(z)\text{Γ}(z+\frac{1}{2})$
\end_inset
we have
\begin_inset Formula
\[
\text{Γ}\left(2-q+n\right)=\frac{2^{1-q+n}}{\sqrt{\pi}}\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right),
\]
\end_inset
so
\size footnotesize
\begin_inset Formula
\begin{eqnarray*}
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \frac{\kor{\text{Γ}\left(2-q+n\right)}}{\kor{2^{n}}k_{0}^{q}}\kor{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)}\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
\kappa
\end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s+1}{t}\begin{Bmatrix}t\\
\kappa
\end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
& = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
\kappa
\end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s+1}{t}\begin{Bmatrix}t\\
\kappa
\end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
\mbox{(D5.2.5)} & = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
\kappa
\end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\text{Γ}\left(\frac{3-q+n}{2}+s\right)\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s+1}{t}\begin{Bmatrix}t\\
\kappa
\end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)
\end{eqnarray*}
\end_inset
\size default
The two terms have to be treated fifferently depending on whether q
\begin_inset Formula $q+n$
\end_inset
is even or odd.
\end_layout
\begin_layout Standard
\lang english
First, assume that
\begin_inset Formula $q+n$
\end_inset
is even, so the left term has gamma functions and pochhammer symbols with
integer arguments, while the right one has half-integer arguments.
As
\begin_inset Formula $n$
\end_inset
is non-negative and
\begin_inset Formula $q$
\end_inset
is positive,
\begin_inset Formula $\frac{q+n}{2}$
\end_inset
is positive, and the Pochhammer symbol
\begin_inset Formula $\left(\frac{2-q-n}{2}\right)_{s}=0$
\end_inset
if
\begin_inset Formula $s\ge\frac{q+n}{2}$
\end_inset
, which transforms the sum over
\begin_inset Formula $s$
\end_inset
to a finite sum for the left term.
However, there still remain divergent terms if
\begin_inset Formula $\frac{2-q+n}{2}+s\le0$
\end_inset
(let's handle this later; maybe D15.8.67 may be then be useful)! Now we
need to perform some transformations of variables to make the other sum
finite as well
\end_layout
\begin_layout Standard
\lang english
Pár kroků zpět:
\begin_inset Formula
\begin{eqnarray*}
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{\text{Γ}\left(2-q+n\right)}}{\kor{2^{n}}k_{0}^{q}}\kor{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\times\left(\underbrace{\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)}\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}}_{\equiv c_{q,n,s}}-\underbrace{\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}}_{č_{q,n,s}}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\times\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
\lang english
If
\begin_inset Formula $q+n$
\end_inset
is even and
\begin_inset Formula $2-q+n\le0$
\end_inset
\begin_inset Formula
\begin{eqnarray*}
\mbox{OK}\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\kor{\hgfr}\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
\mbox{\ensuremath{\mbox{OK}}(D15.1.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}\koru{\text{Γ}(1+n)}}\koru{\hgf}\left(\frac{2-q+n}{2},\kor{\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}}\right)\\
\mbox{(D15.8.6)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{k^{n}}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{2-q+n}}\text{Γ}(1+n)}\koru{\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\kor{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}}\hgf\left(\begin{array}{c}
\frac{2-q+n}{2},\koru{\kor{1-\left(1+n\right)+\frac{2-q+n}{2}}}\\
\koru{\kor{1-\frac{3-q+n}{2}+\frac{2-q+n}{2}}}
\end{array};\koru{\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}}\right)\\
\mbox{NOTOK} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\koru{k^{q-2}}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\koru{\frac{3}{2}\left(2-q+n\right)}}\text{Γ}(1+n)}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\kor{\hgf\left(\begin{array}{c}
\frac{2-q+n}{2},\koru{\frac{2-q-n}{2}}\\
\koru{1/2}
\end{array};\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)}\\
\mbox{(D15.2.1)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\kor{\text{Γ}\left(2-q+n\right)}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\koru{\sum_{s=0}^{\infty}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}}\\
\mbox{(D5.5.5)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{\kor{2^{n}}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\koru{\frac{2^{1-q\kor{+n}}}{\sqrt{\pi}}\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{3-q+n}{2}\right)}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}\frac{\kor{\left(\frac{2-q+n}{2}\right)_{s}}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
\mbox{(D5.2.5)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\koru{2^{1-q}}}{\sqrt{\pi}}\text{Γ}\left(\frac{3-q+n}{2}\right)\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}\frac{\koru{\text{Γ}\left(\frac{2-q+n}{2}+s\right)}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{2^{1-q}}{\sqrt{\pi}}\text{Γ}\left(\frac{3-q+n}{2}\right)\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\frac{q+n}{2}}\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{2^{1-q}}{\sqrt{\pi}}\text{Γ}\left(\frac{3-q+n}{2}\right)\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\frac{q+n}{2}}\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}
\end{eqnarray*}
\end_inset
now
\begin_inset Formula $\left(\frac{2-q-n}{2}\right)_{s}=0$
\end_inset
whenever
\begin_inset Formula $s\ge\frac{q+n}{2}$
\end_inset
and
\begin_inset Formula $\text{Γ}\left(\frac{2-q+n}{2}+s\right)$
\end_inset
is singular whenever
\begin_inset Formula $s\le-\frac{2-q+n}{2}$
\end_inset
, so we are no less fucked than before.
Maybe let's try the other variable transformation.
Or what about (D15.8.27)?
\size footnotesize
\begin_inset Formula
\begin{eqnarray}
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\kor{\hgf\left(\begin{array}{c}
\frac{2-q+n}{2},\frac{2-q-n}{2}\\
1/2
\end{array};\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)}\nonumber \\
\mbox{(D15.8.27)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\kor{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\koru{\frac{\kor{Γ\left(\frac{3-q+n}{2}\right)}Γ\left(\frac{3-q-n}{2}\right)}{2Γ\left(\frac{1}{2}\right)Γ\left(2-q+\frac{1}{2}\right)}\left(\hgf\left(\begin{array}{c}
2-q+n,2-q-n\\
2-q+\frac{1}{2}
\end{array};\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)+\hgf\left(\begin{array}{c}
2-q+n,2-q-n\\
2-q+\frac{1}{2}
\end{array};\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)\right)}\nonumber \\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\kor{\text{Γ}\koru{\left(\frac{3-q+n}{2}-\frac{2-q+n}{2}\right)}}\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\kor{\text{Γ}\left(\frac{1}{2}\right)}\text{Γ}\left(2-q+\frac{1}{2}\right)}\left(\hgf\left(\begin{array}{c}
2-q+n,2-q-n\\
2-q+\frac{1}{2}
\end{array};\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)+\hgf\left(\begin{array}{c}
2-q+n,2-q-n\\
2-q+\frac{1}{2}
\end{array};\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)\right)\nonumber \\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\kor{\left(\hgf\left(\begin{array}{c}
2-q+n,2-q-n\\
2-q+\frac{1}{2}
\end{array};\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)+\hgf\left(\begin{array}{c}
2-q+n,2-q-n\\
2-q+\frac{1}{2}
\end{array};\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)\right)}\nonumber \\
\mbox{(D15.2.1)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\koru{\sum_{s=0}^{\infty}\left(\frac{\left(2-q+n\right)_{s}\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\kor{\left(\left(\frac{1}{2}-\frac{\sigma c-ik_{0}}{ik}\right)^{s}+\left(\frac{1}{2}+\frac{\sigma c-ik_{0}}{ik}\right)^{s}\right)}\right)}\nonumber \\
\mbox{(binom)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\kor{\left(2-q+n\right)_{s}}\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\koru{\sum_{r=0}^{s}\binom{s}{r}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}2^{r-s}\left(\left(-1\right)^{r}+1\right)}\nonumber \\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\kor{\left(1+n\right)_{-\frac{2-q+n}{2}}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\koru{\text{Γ}\left(2-q+n+s\right)}\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}2^{r-s}\left(\left(-1\right)^{r}+1\right)\nonumber \\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}}\frac{\koru{\text{Γ}\left(1+n\right)}\text{Γ}\left(\frac{3-q-n}{2}\right)}{\koru{\text{Γ}\left(\frac{q+n}{2}\right)}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\kor{\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\nonumber \\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{Γ\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\koru{\left(ik\right)^{-r}}\koru{\kor{\left(\sigma c-ik_{0}\right)^{r-\frac{3}{2}\left(2-q+n\right)}}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\nonumber \\
(bionm) & = & \kor{\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(ik\right)^{-r}\koru{\sum_{w=0}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{w}\kor{\sigma^{w}}c^{w}\left(-ik_{0}\right)^{r-\frac{3}{2}\left(2-q+n\right)-w}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\label{eq:ugliness withous singularities}\\
& = & \koru{\kappa!\left(-1\right)^{\kappa}}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=\kor 0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=\kor 0}^{s}\binom{\kor s}{\kor r}\left(ik\right)^{-r}\sum_{w=\kor 0}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{\kor w}\koru{\kor{\begin{Bmatrix}w\\
\kappa
\end{Bmatrix}}}c^{w}\left(-ik_{0}\right)^{r-\frac{3}{2}\left(2-q+n\right)-w}2^{r-s}\left(\left(-1\right)^{r}+1\right)\nonumber \\
& = & \kappa!\left(-1\right)^{\kappa}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=\koru{\kappa}}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=\koru{\kappa}}^{s}\binom{s}{r}\left(ik\right)^{-r}\sum_{w=\koru{\kappa}}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{w}\begin{Bmatrix}w\\
\kappa
\end{Bmatrix}c^{w}\left(-ik_{0}\right)^{r-\frac{3}{2}\left(2-q+n\right)-w}2^{r-s}\left(\left(-1\right)^{r}+1\right)\nonumber \\
& = & \kappa!\left(-1\right)^{\kappa}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=\kappa}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=\kappa}^{s}\binom{s}{r}\left(ik\right)^{-r}\sum_{w=\kappa}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{w}\begin{Bmatrix}w\\
\kappa
\end{Bmatrix}c^{w}\left(-ik_{0}\right)^{r-\frac{3}{2}\left(2-q+n\right)-w}2^{r-s}\left(\left(-1\right)^{r}+1\right)\nonumber
\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
\lang english
The previous things are valid only if
\begin_inset Formula $q$
\end_inset
has a small non-integer part,
\begin_inset Formula $q=q'+\varepsilon$
\end_inset
.
They might still play a role in the series (especially in the infinite
ones) when taking the limit
\begin_inset Formula $\varepsilon\to0$
\end_inset
.
However, we got rid of the singularities in
\begin_inset Formula $\text{Γ}\left(2-q+n+s\right)$
\end_inset
if
\begin_inset Formula $\kappa$
\end_inset
is large enough.
\end_layout
\begin_layout Standard
\lang english
and we get same shit as before due to the singular
\begin_inset Formula $\text{Γ}\left(2-q+n+s\right)$
\end_inset
.
However,
\begin_inset Formula
\begin{eqnarray*}
(...) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}2^{r-s}\kor{\left(\left(-1\right)^{r}+1\right)}\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{\koru{floor(s/2)}}\binom{s}{\koru{2r}}\left(\frac{\sigma c-ik_{0}}{ik}\right)^{\koru{2r}}2^{\koru{2r}-s}\left(\left(-1\right)^{\koru{2r}}+1\right)
\end{eqnarray*}
\end_inset
\begin_inset Formula
\begin{eqnarray*}
(...) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\kor{\left(\frac{\sigma c-ik_{0}}{ik}\right)^{r}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
binom & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\text{Γ}\left(\frac{3-q-n}{2}\right)}{\left(1+n\right)_{-\frac{2-q+n}{2}}2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\koru{\left(ik\right)^{-r}\sum_{b=0}^{r}\binom{r}{b}\sigma^{b}c^{b}\left(-ik_{0}\right)^{r-b}}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
& =
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
\lang english
aaah.
Let's assume that
\begin_inset Formula $q$
\end_inset
is not exactly
\begin_inset Formula
\begin{eqnarray*}
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\kor{\text{Γ}\left(2-q+n\right)}\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}\left(2-q+n\right)\text{Γ}(1+n)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{\frac{3}{2}\left(2-q+n\right)}}\frac{\left(\frac{3-q+n}{2}\right)_{-\frac{2-q+n}{2}}}{\left(1+n\right)_{-\frac{2-q+n}{2}}}\sum_{s=0}^{\infty}k^{-2s}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\left(\frac{1}{2}\right)_{s}s!}\left(\frac{\left(\sigma c-ik_{0}\right)^{2}}{-k^{2}}\right)^{s}
\end{eqnarray*}
\end_inset
zpět
\end_layout
\begin_layout Standard
\lang english
\begin_inset Formula
\begin{eqnarray*}
& = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
\kappa
\end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\begin{Bmatrix}t\\
\kappa
\end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)\\
& = & \frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\kappa!\left(-1\right)^{\kappa}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)\text{Γ}\left(1+s\right)}\sum_{t=0}^{2s}\binom{2s}{t}\begin{Bmatrix}t\\
\kappa
\end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s-t}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)\text{Γ}\left(1+s\right)}\sum_{t=0}^{2s+1}\binom{2s+1}{t}\begin{Bmatrix}t\\
\kappa
\end{Bmatrix}c^{t}\left(-ik_{0}\right)^{2s+1-t}k^{-1}\right)
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Paragraph*
\lang english
Special case
\begin_inset Formula $n=0,q=2$
\end_inset
\end_layout
\begin_layout Standard
\lang english
Take
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:ugliness withous singularities"
\end_inset
\begin_inset Formula
\begin{eqnarray*}
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{q-2}\text{Γ}(1+n)}{2^{n}k_{0}^{q}}\frac{\text{Γ}\left(1+n\right)\text{Γ}\left(\frac{3-q-n}{2}\right)}{\text{Γ}\left(\frac{q+n}{2}\right)2\text{Γ}\left(2-q+\frac{1}{2}\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(2-q+n+s\right)\left(2-q-n\right)_{s}}{\left(2-q+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(ik\right)^{-r}\sum_{w=0}^{\infty|r-\frac{3}{2}\left(2-q+n\right)}\binom{r-\frac{3}{2}\left(2-q+n\right)}{w}\kor{\sigma^{w}}c^{w}\left(-ik_{0}\right)^{r-\frac{3}{2}\left(2-q+n\right)-w}2^{r-s}\left(\left(-1\right)^{r}+1\right)\\
\pht 0{s_{2+\epsilon,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{\epsilon}\text{Γ}(1+n)}{2^{n}k_{0}^{\epsilon}}\frac{\text{Γ}\left(1\right)\text{Γ}\left(\frac{1-\epsilon}{2}\right)}{\text{Γ}\left(\frac{2+\epsilon}{2}\right)2\text{Γ}\left(\frac{1}{2}-\epsilon\right)}\sum_{s=0}^{\infty}\frac{\text{Γ}\left(s-\epsilon\right)\left(-\epsilon\right)_{s}}{\left(\epsilon+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(ik\right)^{-r}\sum_{w=0}^{\infty}\binom{r+\frac{3}{2}\epsilon}{w}\kor{\sigma^{w}}c^{w}\left(-ik_{0}\right)^{r+\frac{3}{2}\epsilon-w}2^{r-s}\left(\left(-1\right)^{r}+1\right)
\end{eqnarray*}
\end_inset
There is one problematic factor on the previous line,
\begin_inset Formula $\Gamma(s-\epsilon)$
\end_inset
for
\begin_inset Formula $s=0$
\end_inset
; the other elementary summands are finite in the limit
\begin_inset Formula $\epsilon\to0$
\end_inset
.
Let us analyse the problematic term.
\begin_inset Formula
\begin{eqnarray*}
\mbox{problem} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{\epsilon}\text{Γ}(1)}{k_{0}^{\epsilon}}\frac{\text{Γ}\left(1\right)\text{Γ}\left(\frac{1-\epsilon}{2}\right)}{\text{Γ}\left(\frac{2+\epsilon}{2}\right)2\text{Γ}\left(\frac{1}{2}-\epsilon\right)}\frac{\text{Γ}\left(-\epsilon\right)\kor{\left(-\epsilon\right)_{0}}}{\kor{\left(\epsilon+\frac{1}{2}\right)_{0}0!}}\kor{\sum_{r=0}^{0}\binom{0}{r}\left(ik\right)^{-r}}\sum_{w=0}^{\infty}\binom{\kor r+\frac{3}{2}\epsilon}{w}\sigma^{w}c^{w}\left(-ik_{0}\right)^{\kor r+\frac{3}{2}\epsilon-w}2^{\kor r-0}\kor{\left(\left(-1\right)^{r}+1\right)}\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{\epsilon}\text{Γ}(1)}{k_{0}^{\epsilon}}\frac{\text{Γ}\left(1\right)\text{Γ}\left(\frac{1-\epsilon}{2}\right)}{\text{Γ}\left(\frac{2+\epsilon}{2}\right)2\text{Γ}\left(\frac{1}{2}-\epsilon\right)}\text{Γ}\left(-\epsilon\right)\sum_{w=0}^{\infty}\kor{\binom{\frac{3}{2}\epsilon}{w}}\sigma^{w}c^{w}\left(-ik_{0}\right)^{\frac{3}{2}\epsilon-w}2\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{\epsilon}\text{Γ}(1)}{k_{0}^{\epsilon}}\frac{\text{Γ}\left(1\right)\text{Γ}\left(\frac{1-\epsilon}{2}\right)}{\text{Γ}\left(\frac{2+\epsilon}{2}\right)2\text{Γ}\left(\frac{1}{2}-\epsilon\right)}\text{Γ}\left(-\epsilon\right)\sum_{w=0}^{\infty}\frac{\Gamma\left(1+\frac{3}{2}\epsilon\right)}{\Gamma\left(w+1\right)\Gamma\left(1+\frac{3}{2}\epsilon-w\right)}\sigma^{w}c^{w}\left(-ik_{0}\right)^{\frac{3}{2}\epsilon-w}2.
\end{eqnarray*}
\end_inset
In the last sum, the divisor
\begin_inset Formula $\Gamma\left(1+\frac{3}{2}\epsilon-w\right)$
\end_inset
counters the
\begin_inset Formula $\epsilon\to0$
\end_inset
divergence for all summands except for the case
\begin_inset Formula $w=0$
\end_inset
.
However, that divergence gets canceled by the
\begin_inset Formula $\kappa$
\end_inset
-regularisation,
\begin_inset Formula
\[
\mbox{problem}=\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{\epsilon}\text{Γ}(1+n)}{2^{n}k_{0}^{\epsilon}}\frac{\text{Γ}\left(1\right)\text{Γ}\left(\frac{1-\epsilon}{2}\right)}{\text{Γ}\left(\frac{2+\epsilon}{2}\right)2\text{Γ}\left(\frac{1}{2}-\epsilon\right)}\kor{\text{Γ}\left(-\epsilon\right)}\sum_{w=\koru{\kappa}}^{\infty}\frac{\Gamma\left(1+\frac{3}{2}\epsilon\right)}{\Gamma\left(w+1\right)\kor{\Gamma\left(1+\frac{3}{2}\epsilon-w\right)}}\sigma^{w}c^{w}\left(-ik_{0}\right)^{\frac{3}{2}\epsilon-w}2.
\]
\end_inset
6amma function has simple poles for non-positive integer arguments with
\begin_inset Formula $\mathrm{Res}\left(Γ,-n\right)=\left(-1\right)^{n}/n!$
\end_inset
, so writing the Laurent series for the underlined factors gives
\begin_inset Formula
\[
\lim_{\epsilon\to0}\frac{Γ\left(-\epsilon\right)}{Γ\left(1+\frac{3}{2}\epsilon-w\right)}=\lim_{\epsilon\to0}\frac{\left(-\epsilon\right)^{-1}+\sum_{n=0}^{\infty}\dots\epsilon^{n}}{\left(-1\right)^{w-1}\left(\frac{3}{2}\epsilon\left(w-1\right)!\right)^{-1}+\sum_{n=0}^{\infty}\dots\epsilon^{n}}=\lim_{\epsilon\to0}\frac{-1+\epsilon\sum_{n=0}^{\infty}\dots\epsilon^{n}}{\left(-1\right)^{w-1}\frac{2}{3}/\left(w-1\right)!+\epsilon\sum_{n=0}^{\infty}\dots\epsilon^{n}}=\frac{3}{2}\left(-1\right)^{w}\left(w-1\right)!
\]
\end_inset
and the rest is obviously continuous with regard to
\begin_inset Formula $\epsilon$
\end_inset
.
Therefore,
\begin_inset Formula
\begin{eqnarray*}
\lim_{\epsilon\to0}\mbox{problem} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\sum_{w=\kappa}^{\infty}\frac{1}{\kor{\Gamma\left(w+1\right)}}\frac{3}{2}\left(-1\right)^{w}\kor{\left(w-1\right)!}\sigma^{w}c^{w}\left(-ik_{0}\right)^{-w}\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{3}{2}\sum_{w=\kappa}^{\infty}\frac{\left(-1\right)^{w}\sigma^{w}c^{w}\left(-ik_{0}\right)^{-w}}{\koru w}\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{3}{2}\sum_{w=\kappa}^{\infty}\frac{1}{w}\left(-i\frac{\sigma c}{k_{0}}\right)^{w}
\end{eqnarray*}
\end_inset
and if
\begin_inset Formula $\left|\sigma c/k_{0}\right|<1$
\end_inset
, the last expression is (almost) the well known power series
\begin_inset Formula $\log\left(1+x\right)=-\sum_{n=1}^{\infty}\left(-x\right)^{n}/n$
\end_inset
, so
\begin_inset Formula
\[
\lim_{\epsilon\to0}\mbox{problem}=-\kor{\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}}\frac{3}{2}\left[\log\left(1+i\frac{\sigma c}{k_{0}}\right)+\sum_{w=1}^{\kappa-1}\frac{1}{w}\kor{\left(-i\frac{\sigma c}{k_{0}}\right)^{w}}\right]
\]
\end_inset
and the
\begin_inset Formula $\kappa$
\end_inset
-regularisation makes the last term identically zero, providing even simpler
expression
\begin_inset Formula
\[
\lim_{\epsilon\to0}\mbox{problem}=-\frac{3}{2}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\log\left(1+i\frac{\sigma c}{k_{0}}\right).
\]
\end_inset
\emph on
What does this mean w.r.t.
the limit
\begin_inset Formula $k\to\infty$
\end_inset
?
\emph default
Back to the whole Bessel transform,
\begin_inset Formula
\begin{eqnarray*}
\pht 0{s_{2+\epsilon,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & - & \mbox{problem}\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{\epsilon}\text{Γ}(1+n)}{2^{n}k_{0}^{\epsilon}}\frac{\text{Γ}\left(1\right)\text{Γ}\left(\frac{1-\epsilon}{2}\right)}{\text{Γ}\left(\frac{2+\epsilon}{2}\right)2\text{Γ}\left(\frac{1}{2}-\epsilon\right)}\sum_{s=1}^{\infty}\frac{\text{Γ}\left(s-\epsilon\right)\left(-\epsilon\right)_{s}}{\left(\epsilon+\frac{1}{2}\right)_{s}s!}\sum_{r=0}^{s}\binom{s}{r}\left(ik\right)^{-r}\sum_{w=0}^{\infty}\binom{r+\frac{3}{2}\epsilon}{w}\kor{\sigma^{w}}c^{w}\left(-ik_{0}\right)^{r+\frac{3}{2}\epsilon-w}2^{r-s}\left(\left(-1\right)^{r}+1\right)
\end{eqnarray*}
\end_inset
\end_layout
\end_body
\end_document