qpms/lepaper/finite.lyx

2403 lines
64 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 584
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "TeX Gyre Pagella"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf true
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_author "Marek Nečada"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Finite systems
\begin_inset CommandInset label
LatexCommand label
name "sec:Finite"
\end_inset
\end_layout
\begin_layout Standard
The basic idea of MSTMM is quite simple: the driving electromagnetic field
incident onto a scatterer is expanded into a vector spherical wavefunction
(VSWF) basis in which the single scattering problem is solved, and the
scattered field is then re-expanded into VSWFs centered at the other scatterers.
Repeating the same procedure with all (pairs of) scatterers yields a set
of linear equations, solution of which gives the coefficients of the scattered
field in the VSWF bases.
Once these coefficients have been found, one can evaluate various quantities
related to the scattering (such as cross sections or the scattered fields)
quite easily.
\end_layout
\begin_layout Standard
The expressions appearing in the re-expansions are fairly complicated, and
the implementation of MSTMM is extremely error-prone also due to the various
conventions used in the literature.
Therefore although we do not re-derive from scratch the expressions that
can be found elsewhere in literature, for reader's reference we always
state them explicitly in our convention.
\end_layout
\begin_layout Subsection
Single-particle scattering
\end_layout
\begin_layout Standard
In order to define the basic concepts, let us first consider the case of
electromagnetic (EM) radiation scattered by a single particle.
We assume that the scatterer lies inside a closed ball
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
\end_inset
of radius
\begin_inset Formula $R^{<}$
\end_inset
and center in the origin of the coordinate system (which can be chosen
that way; the natural choice of
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
\end_inset
is the circumscribed ball of the scatterer) and that there exists a larger
open cocentric ball
\begin_inset Formula $\openball{R^{>}}{\vect 0}$
\end_inset
, such that the (non-empty) spherical shell
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}=\openball{R^{>}}{\vect 0}\setminus\closedball{R^{<}}{\vect 0}$
\end_inset
is filled with a homogeneous isotropic medium with relative electric permittivi
ty
\begin_inset Formula $\epsilon(\vect r,\omega)=\epsbg(\omega)$
\end_inset
and magnetic permeability
\begin_inset Formula $\mu(\vect r,\omega)=\mubg(\omega)$
\end_inset
, and that the whole system is linear, i.e.
the material properties of neither the medium nor the scatterer depend
on field intensities.
Under these assumptions, the EM fields
\begin_inset Formula $\vect{\Psi}=\vect E,\vect H$
\end_inset
in
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
\end_inset
must satisfy the homogeneous vector Helmholtz equation together with the
transversality condition
\begin_inset Formula
\begin{equation}
\left(\nabla^{2}+\kappa^{2}\right)\Psi\left(\vect r,\vect{\omega}\right)=0,\quad\nabla\cdot\vect{\Psi}\left(\vect r,\vect{\omega}\right)=0\label{eq:Helmholtz eq}
\end{equation}
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
frequency-space Maxwell's equations
\begin_inset Formula
\begin{align*}
\nabla\times\vect E\left(\vect r,\omega\right)-ik\eta_{0}\eta\vect H\left(\vect r,\omega\right) & =0,\\
\eta_{0}\eta\nabla\times\vect H\left(\vect r,\omega\right)+ik\vect E\left(\vect r,\omega\right) & =0.
\end{align*}
\end_inset
\end_layout
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
todo define
\begin_inset Formula $\Psi$
\end_inset
, mention transversality
\end_layout
\end_inset
with
\begin_inset Formula $\kappa=\kappa\left(\omega\right)=\omega\sqrt{\mubg(\omega)\epsbg(\omega)}/c_{0}$
\end_inset
, as can be derived from Maxwell's equations
\begin_inset CommandInset citation
LatexCommand cite
key "jackson_classical_1998"
literal "false"
\end_inset
.
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO ref to the chapter.
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
Spherical waves
\end_layout
\begin_layout Standard
Equation
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:Helmholtz eq"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be solved by separation of variables in spherical coordinates to give
the solutions the
\emph on
regular
\emph default
and
\emph on
outgoing
\emph default
vector spherical wavefunctions (VSWFs)
\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$
\end_inset
and
\begin_inset Formula $\vswfouttlm{\tau}lm\left(k\vect r\right)$
\end_inset
, respectively, defined as follows:
\begin_inset Formula
\begin{align}
\vswfrtlm 1lm\left(k\vect r\right) & =j_{l}\left(\kappa r\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
\vswfrtlm 2lm\left(k\vect r\right) & =\frac{1}{\kappa r}\frac{\ud\left(\kappa rj_{l}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{j_{l}\left(\kappa r\right)}{kr}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF regular}
\end{align}
\end_inset
\begin_inset Formula
\begin{align}
\vswfouttlm 1lm\left(k\vect r\right) & =h_{l}^{\left(1\right)}\left(kr\right)\vsh 1lm\left(\uvec r\right),\nonumber \\
\vswfouttlm 2lm\left(k\vect r\right) & =\frac{1}{kr}\frac{\ud\left(krh_{l}^{\left(1\right)}\left(\kappa r\right)\right)}{\ud\left(kr\right)}\vsh 2lm\left(\uvec r\right)+\sqrt{l\left(l+1\right)}\frac{h_{l}^{\left(1\right)}\left(\kappa r\right)}{\kappa r}\vsh 3lm\left(\uvec r\right),\label{eq:VSWF outgoing}\\
& \tau=1,2;\quad l=1,2,3,\dots;\quad m=-l,-l+1,\dots,+l,\nonumber
\end{align}
\end_inset
where
\begin_inset Formula $\vect r=r\uvec r$
\end_inset
,
\begin_inset Formula $j_{l}\left(x\right),h_{l}^{\left(1\right)}\left(x\right)=j_{l}\left(x\right)+iy_{l}\left(x\right)$
\end_inset
are the regular spherical Bessel function and spherical Hankel function
of the first kind, respectively, as in
\begin_inset CommandInset citation
LatexCommand cite
after "§10.47"
key "NIST:DLMF"
literal "false"
\end_inset
, and
\begin_inset Formula $\vsh{\tau}lm$
\end_inset
are the
\emph on
vector spherical harmonics
\emph default
\begin_inset Formula
\begin{align}
\vsh 1lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\times\left(\vect r\ush lm\left(\uvec r\right)\right)=\frac{1}{\sqrt{l\left(l+1\right)}}\nabla\ush lm\left(\uvec r\right)\times\vect r,\nonumber \\
\vsh 2lm\left(\uvec r\right) & =\frac{1}{\sqrt{l\left(l+1\right)}}r\nabla\ush lm\left(\uvec r\right),\nonumber \\
\vsh 3lm\left(\uvec r\right) & =\uvec r\ush lm\left(\uvec r\right).\label{eq:vector spherical harmonics definition}
\end{align}
\end_inset
In our convention, the (scalar) spherical harmonics
\begin_inset Formula $\ush lm$
\end_inset
are identical to those in
\begin_inset CommandInset citation
LatexCommand cite
after "14.30.1"
key "NIST:DLMF"
literal "false"
\end_inset
, i.e.
\begin_inset Formula
\[
\ush lm=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right)
\]
\end_inset
where importantly, the Ferrers functions
\begin_inset Formula $\dlmfFer lm$
\end_inset
defined as in
\begin_inset CommandInset citation
LatexCommand cite
after "§14.3(i)"
key "NIST:DLMF"
literal "false"
\end_inset
do already contain the Condon-Shortley phase
\begin_inset Formula $\left(-1\right)^{m}$
\end_inset
.
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO názornější definice.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The convention for VSWFs used here is the same as in
\begin_inset CommandInset citation
LatexCommand cite
key "kristensson_spherical_2014"
literal "false"
\end_inset
; over other conventions used elsewhere in literature, it has several fundamenta
l advantages most importantly, the translation operators introduced later
in eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:reqular vswf coefficient vector translation"
plural "false"
caps "false"
noprefix "false"
\end_inset
are unitary, and it gives the simplest possible expressions for power transport
and cross sections without additional
\begin_inset Formula $l,m$
\end_inset
-dependent factors (for that reason, we also call our VSWFs as
\emph on
power-normalised
\emph default
).
Power-normalisation and unitary translation operators are possible to achieve
also with real spherical harmonics such a convention is used in
\begin_inset CommandInset citation
LatexCommand cite
key "kristensson_scattering_2016"
literal "false"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
Its solutions (TODO under which conditions? What vector space do the SVWFs
actually span? Check Comment 9.2 and Appendix f.9.1 in Kristensson)
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO small note about cartesian multipoles, anapoles etc.
(There should be some comparing paper that the Russians at META 2018 mentioned.)
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
T-matrix definition
\end_layout
\begin_layout Standard
The regular VSWFs
\begin_inset Formula $\vswfrtlm{\tau}lm\left(k\vect r\right)$
\end_inset
would constitute a basis for solutions of the Helmholtz equation
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Helmholtz eq"
plural "false"
caps "false"
noprefix "false"
\end_inset
inside a ball
\begin_inset Formula $\openball{R^{>}}{\vect 0}$
\end_inset
with radius
\begin_inset Formula $R^{>}$
\end_inset
and center in the origin, were it filled with homogeneous isotropic medium;
however, if the equation is not guaranteed to hold inside a smaller ball
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
\end_inset
around the origin (typically due to presence of a scatterer), one has to
add the outgoing VSWFs
\begin_inset Formula $\vswfrtlm{\tau}lm\left(\kappa\vect r\right)$
\end_inset
to have a complete basis of the solutions in the volume
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}=\openball{R^{>}}{\vect 0}\setminus\closedball{R^{<}}{\vect 0}$
\end_inset
.
\begin_inset Note Note
status open
\begin_layout Plain Layout
Vnitřní koule uzavřená? Jak se řekne mezikulí anglicky?
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The single-particle scattering problem at frequency
\begin_inset Formula $\omega$
\end_inset
can be posed as follows: Let a scatterer be enclosed inside the ball
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
\end_inset
and let the whole volume
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
\end_inset
be filled with a homogeneous isotropic medium with wave number
\begin_inset Formula $\kappa\left(\omega\right)$
\end_inset
.
Inside
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
\end_inset
, the electric field can be expanded as
\begin_inset Note Note
status open
\begin_layout Plain Layout
doplnit frekvence a polohy
\end_layout
\end_inset
\begin_inset Formula
\begin{equation}
\vect E\left(\omega,\vect r\right)=\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\vect r\right)+\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\vect r\right)\right).\label{eq:E field expansion}
\end{equation}
\end_inset
If there were no scatterer and
\begin_inset Formula $\closedball{R^{<}}{\vect 0}$
\end_inset
were filled with the same homogeneous medium, the part with the outgoing
VSWFs would vanish and only the part
\begin_inset Formula $\vect E_{\mathrm{inc}}=\sum_{\tau lm}\rcoefftlm{\tau}lm\vswfrtlm{\tau}lm$
\end_inset
due to sources outside
\begin_inset Formula $\openball{R^{>}}{\vect 0}$
\end_inset
would remain.
Let us assume that the
\begin_inset Quotes eld
\end_inset
driving field
\begin_inset Quotes erd
\end_inset
is given, so that presence of the scatterer does not affect
\begin_inset Formula $\vect E_{\mathrm{inc}}$
\end_inset
and is fully manifested in the latter part,
\begin_inset Formula $\vect E_{\mathrm{scat}}=\sum_{\tau lm}\outcoefftlm{\tau}lm\vswfouttlm{\tau}lm$
\end_inset
.
We also assume that the scatterer is made of optically linear materials
and hence reacts to the incident field in a linear manner.
This gives a linearity constraint between the expansion coefficients
\begin_inset Formula
\begin{equation}
\outcoefftlm{\tau}lm=\sum_{\tau'l'm'}T_{\tau lm}^{\tau'l'm'}\rcoefftlm{\tau'}{l'}{m'}\label{eq:T-matrix definition}
\end{equation}
\end_inset
where the
\begin_inset Formula $T_{\tau lm}^{\tau'l'm'}=T_{\tau lm}^{\tau'l'm'}\left(\omega\right)$
\end_inset
are the elements of the
\emph on
transition matrix,
\emph default
a.k.a.
\begin_inset Formula $T$
\end_inset
-matrix.
It completely describes the scattering properties of a linear scatterer,
so with the knowledge of the
\begin_inset Formula $T$
\end_inset
-matrix we can solve the single-patricle scatering prroblem simply by substituti
ng appropriate expansion coefficients
\begin_inset Formula $\rcoefftlm{\tau'}{l'}{m'}$
\end_inset
of the driving field into
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:T-matrix definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
The outgoing VSWF expansion coefficients
\begin_inset Formula $\outcoefftlm{\tau}lm$
\end_inset
are the effective induced electric (
\begin_inset Formula $\tau=2$
\end_inset
) and magnetic (
\begin_inset Formula $\tau=1$
\end_inset
) multipole polarisation amplitudes of the scatterer, and this is why we
sometimes refer to the corresponding VSWFs as to the electric and magnetic
VSWFs, respectively.
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO mention the pseudovector character of magnetic VSWFs.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
TOOD H-field expansion here?
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $T$
\end_inset
-matrices of particles with certain simple geometries (most famously spherical)
can be obtained analytically
\begin_inset CommandInset citation
LatexCommand cite
key "kristensson_scattering_2016,mie_beitrage_1908"
literal "false"
\end_inset
, but in general one can find them numerically by simulating scattering
of a regular spherical wave
\begin_inset Formula $\vswfouttlm{\tau}lm$
\end_inset
and projecting the scattered fields (or induced currents, depending on
the method) onto the outgoing VSWFs
\begin_inset Formula $\vswfrtlm{\tau}{'l'}{m'}$
\end_inset
.
In practice, one can compute only a finite number of elements with a cut-off
value
\begin_inset Formula $L$
\end_inset
on the multipole degree,
\begin_inset Formula $l,l'\le L$
\end_inset
, see below.
For the numerical evaluation of
\begin_inset Formula $T$
\end_inset
-matrices we typically use the scuff-tmatrix tool from the free software
SCUFF-EM suite
\begin_inset CommandInset citation
LatexCommand cite
key "reid_efficient_2015,SCUFF2"
literal "false"
\end_inset
.
Note that older versions of SCUFF-EM contained a bug that rendered almost
all
\begin_inset Formula $T$
\end_inset
-matrix results wrong; we found and fixed the bug and from upstream version
xxx
\begin_inset Marginal
status open
\begin_layout Plain Layout
Not yet merged to upstream.
\end_layout
\end_inset
onwards, it should behave correctly.
\end_layout
\begin_layout Subsubsection
T-matrix compactness, cutoff validity
\end_layout
\begin_layout Standard
The magnitude of the
\begin_inset Formula $T$
\end_inset
-matrix elements depends heavily on the scatterer's size compared to the
wavelength.
Fortunately, the
\begin_inset Formula $T$
\end_inset
-matrix of a bounded scatterer is a compact operator
\begin_inset CommandInset citation
LatexCommand cite
key "ganesh_convergence_2012"
literal "false"
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO
\end_layout
\end_inset
, so from certain multipole degree onwards,
\begin_inset Formula $l,l'>L$
\end_inset
, the elements of the
\begin_inset Formula $T$
\end_inset
-matrix are negligible, so truncating the
\begin_inset Formula $T$
\end_inset
-matrix at finite multipole degree
\begin_inset Formula $L$
\end_inset
gives a good approximation of the actual infinite-dimensional itself.
If the incident field is well-behaved, i.e.
the expansion coefficients
\begin_inset Formula $\rcoefftlm{\tau'}{l'}{m'}$
\end_inset
do not take excessive values for
\begin_inset Formula $l'>L$
\end_inset
, the scattered field expansion coefficients
\begin_inset Formula $\outcoefftlm{\tau}lm$
\end_inset
with
\begin_inset Formula $l>L$
\end_inset
will also be negligible.
\end_layout
\begin_layout Standard
A rule of thumb to choose the
\begin_inset Formula $L$
\end_inset
with desired
\begin_inset Formula $T$
\end_inset
-matrix element accuracy
\begin_inset Formula $\delta$
\end_inset
can be obtained from the spherical Bessel function expansion around zero
\begin_inset CommandInset citation
LatexCommand cite
after "10.52.1"
key "NIST:DLMF"
literal "false"
\end_inset
by requiring that
\begin_inset Formula $\delta\gg\left(nR\right)^{L}/\left(2L+1\right)!!$
\end_inset
, where
\begin_inset Formula $R$
\end_inset
is the scatterer radius and
\begin_inset Formula $n$
\end_inset
its (maximum) refractive index.
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
\begin_inset Formula
\begin{align*}
\left(2n+1\right)!! & =\frac{\left(2n+1\right)!}{2^{n}n!},\\
\delta\gtrsim & \frac{R^{L}}{\left(2L+1\right)!!}=\frac{\left(2R\right)^{L}L!}{\left(2L+1\right)!}
\end{align*}
\end_inset
Stirling
\begin_inset Formula $n!\approx\sqrt{2\pi n}\left(n/e\right)^{n}$
\end_inset
so
\begin_inset Newline newline
\end_inset
\begin_inset Formula
\begin{align*}
\delta & \gtrsim\left(2R\right)^{L}\frac{\sqrt{2\pi L}\left(\frac{L}{e}\right)^{L}}{\sqrt{2\pi\left(2L+1\right)}\left(\frac{2L+1}{e}\right)^{2L+1}}\\
\delta & \gtrsim\left(2R\right)^{L}\frac{\sqrt{L}\left(\frac{L}{e}\right)^{L}}{\sqrt{2L+1}\left(\frac{2L+1}{e}\right)^{2L+1}}\\
\log\delta & \gtrsim L\log2+L\log R+\frac{1}{2}\log L-\frac{1}{2}\log\left(2L+1\right)+L\log L-L\log e-\left(2L+1\right)\log\left(2L+1\right)+\left(2L+1\right)\log e\\
\log\delta & \gtrsim L\log2+L\log R+\left(L+\frac{1}{2}\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2L+1\right)+\left(L+1\right)\\
& >L\log2+L\log R+\left(L+\frac{1}{2}\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2L\right)+\left(L+1\right)\\
& =L\log2+L\log R-\left(L+1\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2\right)+\left(L+1\right)\\
& =L\log2+L\log R-\left(L+1\right)\log L-\left(2L+\frac{3}{2}\right)\log\left(2\right)+\left(L+1\right)
\end{align*}
\end_inset
too complicated, watabout
\begin_inset Formula
\[
\delta\gtrsim\left(2R\right)^{L}\frac{L^{L+1/2}e^{L}}{\left(2L\right)^{2L}}=\frac{R^{L}e^{L}}{2^{L}}L^{L+1/2}
\]
\end_inset
\begin_inset Formula
\[
\log\delta\gtrsim L\log\frac{ReL}{2}
\]
\end_inset
\begin_inset Formula
\[
\log\delta\gtrsim L\log\frac{ReL}{2}
\]
\end_inset
yäk
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
Power transport
\end_layout
\begin_layout Standard
For convenience, let us introduce a short-hand matrix notation for the expansion
coefficients and related quantities, so that we do not need to write the
indices explicitly; so for example, eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:T-matrix definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
would be written as
\begin_inset Formula $\outcoeffp{}=T\rcoeffp{}$
\end_inset
, where
\begin_inset Formula $\rcoeffp{},\outcoeffp{}$
\end_inset
are column vectors with the expansion coefficients.
Transposed and complex-conjugated matrices are labeled with the
\begin_inset Formula $\dagger$
\end_inset
superscript.
\end_layout
\begin_layout Standard
With this notation, we state an important result about power transport,
derivation of which can be found in
\begin_inset CommandInset citation
LatexCommand cite
after "sect. 7.3"
key "kristensson_scattering_2016"
literal "true"
\end_inset
.
Let the field in
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
\end_inset
have expansion as in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:E field expansion"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
Then the net power transported from
\begin_inset Formula $\openball{R^{<}}{\vect 0}$
\end_inset
to
\begin_inset Formula $\mezikuli{R^{<}}{R^{>}}{\vect 0}$
\end_inset
via by electromagnetic radiation is
\begin_inset Formula
\begin{equation}
P=\frac{1}{2\kappa^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)=\frac{1}{2\kappa^{2}\eta_{0}\eta}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{}.\label{eq:Power transport}
\end{equation}
\end_inset
In realistic scattering setups, power is transferred by radiation into
\begin_inset Formula $\openball{R^{<}}{\vect 0}$
\end_inset
and absorbed by the enclosed scatterer, so
\begin_inset Formula $P$
\end_inset
is negative and its magnitude equals to power absorbed by the scatterer.
\end_layout
\begin_layout Subsubsection
Plane wave expansion
\end_layout
\begin_layout Standard
In many scattering problems considered in practice, the driving field is
at least approximately a plane wave.
A transversal (
\begin_inset Formula $\uvec k\cdot\vect E_{0}=0$
\end_inset
) plane wave propagating in direction
\begin_inset Formula $\uvec k$
\end_inset
with (complex) amplitude
\begin_inset Formula $\vect E_{0}$
\end_inset
can be expanded into regular VSWFs
\begin_inset CommandInset citation
LatexCommand cite
after "7.7.1"
key "kristensson_scattering_2016"
literal "false"
\end_inset
as
\begin_inset Formula
\[
\vect E_{\mathrm{PW}}\left(\vect r,\omega\right)=\vect E_{0}e^{i\kappa\uvec k\cdot\vect r}=\sum_{\tau,l,m}\rcoeffptlm{}{\tau}lm\left(\uvec k,\vect E_{0}\right)\vswfrtlm{\tau}lm\left(\kappa\vect r\right),
\]
\end_inset
with expansion coefficients
\begin_inset Formula
\begin{eqnarray}
\rcoeffptlm{}1lm\left(\uvec k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD 1lm\left(\uvec k\right)\cdot\vect E_{0},\nonumber \\
\rcoeffptlm{}2lm\left(\uvec k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD 2lm\left(\uvec k\right)\cdot\vect E_{0}.\label{eq:plane wave expansion}
\end{eqnarray}
\end_inset
where
\begin_inset Formula $\vshD{\tau}lm$
\end_inset
are the
\begin_inset Quotes eld
\end_inset
dual
\begin_inset Quotes erd
\end_inset
vector spherical harmonics defined by duality relation with the
\begin_inset Quotes eld
\end_inset
usual
\begin_inset Quotes erd
\end_inset
vector spherical harmonics
\begin_inset Formula
\begin{equation}
\iint\vshD{\tau'}{l'}{m'}\left(\uvec r\right)\cdot\vsh{\tau}lm\left(\uvec r\right)\,\ud\Omega=\delta_{\tau'\tau}\delta_{l'l}\delta_{m'm}\label{eq:dual vsh}
\end{equation}
\end_inset
(complex conjugation not implied in the dot product here).
In our convention, we have
\begin_inset Formula
\[
\vshD{\tau}lm\left(\uvec r\right)=\left(\vsh{\tau}lm\left(\uvec r\right)\right)^{*}=\left(-1\right)^{m}\vsh{\tau}{l-}m\left(\uvec r\right).
\]
\end_inset
\end_layout
\begin_layout Subsubsection
Cross-sections (single-particle)
\end_layout
\begin_layout Standard
With the
\begin_inset Formula $T$
\end_inset
-matrix and expansion coefficients of plane waves in hand, we can state
the expressions for cross-sections of a single scatterer.
Assuming a non-lossy background medium, extinction, scattering and absorption
cross sections of a single scatterer irradiated by a plane wave propagating
in direction
\begin_inset Formula $\uvec k$
\end_inset
and (complex) amplitude
\begin_inset Formula $\vect E_{0}$
\end_inset
are
\begin_inset CommandInset citation
LatexCommand cite
after "sect. 7.8.2"
key "kristensson_scattering_2016"
literal "true"
\end_inset
\begin_inset Formula
\begin{eqnarray}
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\
& & =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single}
\end{eqnarray}
\end_inset
where
\begin_inset Formula $\rcoeffp{}=\rcoeffp{}\left(\vect k,\vect E_{0}\right)$
\end_inset
is the vector of plane wave expansion coefficients as in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:plane wave expansion"
\end_inset
.
\end_layout
\begin_layout Subsection
Multiple scattering
\begin_inset CommandInset label
LatexCommand label
name "subsec:Multiple-scattering"
\end_inset
\end_layout
\begin_layout Standard
If the system consists of multiple scatterers, the EM fields around each
one can be expanded in analogous way.
Let
\begin_inset Formula $\mathcal{P}$
\end_inset
be an index set labeling the scatterers.
We enclose each scatterer in a closed ball
\begin_inset Formula $\closedball{R_{p}}{\vect r_{p}}$
\end_inset
such that the balls do not touch,
\begin_inset Formula $\closedball{R_{p}}{\vect r_{p}}\cap\closedball{R_{q}}{\vect r_{q}}=\emptyset;p,q\in\mathcal{P}$
\end_inset
, so there is a non-empty spherical shell
\begin_inset Note Note
status open
\begin_layout Plain Layout
jaksetometuje?
\end_layout
\end_inset
\begin_inset Formula $\mezikuli{R_{p}}{R_{p}^{>}}{\vect r_{p}}$
\end_inset
around each one that contains only the background medium without any scatterers
; we assume that all the relevant volume outside
\begin_inset Formula $\bigcap_{p\in\mathcal{P}}\closedball{R_{p}}{\vect r_{p}}$
\end_inset
is filled with the same background medium.
Then the EM field inside each
\begin_inset Formula $\mezikuli{R_{p}}{R_{p}^{>}}{\vect r_{p}}$
\end_inset
can be expanded in a way similar to
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:E field expansion"
plural "false"
caps "false"
noprefix "false"
\end_inset
, using VSWFs with origins shifted to the centre of the volume:
\begin_inset Formula
\begin{align}
\vect E\left(\omega,\vect r\right) & =\sum_{\tau=1,2}\sum_{l=1}^{\infty}\sum_{m=-l}^{+l}\left(\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)+\outcoeffptlm p{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)\right),\label{eq:E field expansion multiparticle}\\
& \vect r\in\mezikuli{R_{p}}{R_{p}^{>}}{\vect r_{p}}.\nonumber
\end{align}
\end_inset
Unlike the single scatterer case, the incident field coefficients
\begin_inset Formula $\rcoeffptlm p{\tau}lm$
\end_inset
here are not only due to some external driving field that the particle
does not influence but they also contain the contributions of fields scattered
from
\emph on
all other scatterers
\emph default
:
\begin_inset Formula
\begin{equation}
\rcoeffp p=\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q\label{eq:particle total incident field coefficient a}
\end{equation}
\end_inset
where
\begin_inset Formula $\rcoeffincp p$
\end_inset
represents the part due to the external driving that the scatterers can
not influence, and
\begin_inset Formula $\tropsp pq$
\end_inset
is a
\emph on
translation operator
\emph default
defined below in Sec.
\begin_inset CommandInset ref
LatexCommand ref
reference "subsec:Translation-operator"
plural "false"
caps "false"
noprefix "false"
\end_inset
, that contains the re-expansion coefficients of the outgoing waves in origin
\begin_inset Formula $\vect r_{q}$
\end_inset
into regular waves in origin
\begin_inset Formula $\vect r_{p}$
\end_inset
.
For each scatterer, we also have its
\begin_inset Formula $T$
\end_inset
-matrix relation as in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:T-matrix definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset Formula
\[
\outcoeffp q=T_{q}\rcoeffp q.
\]
\end_inset
Together with
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:particle total incident field coefficient a"
plural "false"
caps "false"
noprefix "false"
\end_inset
, this gives rise to a set of linear equations
\begin_inset Formula
\begin{equation}
\outcoeffp p-T_{p}\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q=T_{p}\rcoeffincp p,\quad p\in\mathcal{P}\label{eq:Multiple-scattering problem}
\end{equation}
\end_inset
which defines the multiple-scattering problem.
If all the
\begin_inset Formula $p,q$
\end_inset
-indexed vectors and matrices (note that without truncation, they are infinite-d
imensional) are arranged into blocks of even larger vectors and matrices,
this can be written in a short-hand form
\begin_inset Formula
\begin{equation}
\left(I-T\trops\right)\outcoeff=T\rcoeffinc\label{eq:Multiple-scattering problem block form}
\end{equation}
\end_inset
where
\begin_inset Formula $I$
\end_inset
is the identity matrix,
\begin_inset Formula $T$
\end_inset
is a block-diagonal matrix containing all the individual
\begin_inset Formula $T$
\end_inset
-matrices, and
\begin_inset Formula $\trops$
\end_inset
contains the individual
\begin_inset Formula $\tropsp pq$
\end_inset
matrices as the off-diagonal blocks, whereas the diagonal blocks are set
to zeros.
\end_layout
\begin_layout Standard
In practice, the multiple-scattering problem is solved in its truncated
form, in which all the
\begin_inset Formula $l$
\end_inset
-indices related to a given scatterer
\begin_inset Formula $p$
\end_inset
are truncated as
\begin_inset Formula $l\le L_{p}$
\end_inset
, leaving only
\begin_inset Formula $N_{p}=2L_{p}\left(L_{p}+2\right)$
\end_inset
different
\begin_inset Formula $\tau lm$
\end_inset
-multiindices left.
The truncation degree can vary for different scatterers (e.g.
due to different physical sizes), so the truncated block
\begin_inset Formula $\left[\tropsp pq\right]_{l_{q}\le L_{q};l_{p}\le L_{q}}$
\end_inset
has shape
\begin_inset Formula $N_{p}\times N_{q}$
\end_inset
, not necessarily square.
\begin_inset Note Note
status open
\begin_layout Plain Layout
Such truncation of the translation operator
\begin_inset Formula $\tropsp pq$
\end_inset
is justified by the fact on the left, TODO
\end_layout
\end_inset
\end_layout
\begin_layout Standard
If no other type of truncation is done, there remain
\begin_inset Formula $2L_{p}\left(L_{p}+2\right)$
\end_inset
different
\begin_inset Formula $\tau lm$
\end_inset
-multiindices for
\begin_inset Formula $p$
\end_inset
-th scatterer, so that the truncated version of the matrix
\begin_inset Formula $\left(I-T\trops\right)$
\end_inset
is a square matrix with
\begin_inset Formula $\left(\sum_{p\in\mathcal{P}}N_{p}\right)^{2}$
\end_inset
elements in total.
The truncated problem
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
can then be solved using standard numerical linear algebra methods (typically,
by LU factorisation of the
\begin_inset Formula $\left(I-T\trops\right)$
\end_inset
matrix at a given frequency, and then solving with Gauss elimination for
as many different incident
\begin_inset Formula $\rcoeffinc$
\end_inset
vectors as needed).
\end_layout
\begin_layout Standard
Alternatively, the multiple scattering problem can be formulated in terms
of the regular field expansion coefficients,
\begin_inset Formula
\begin{align*}
\rcoeffp p-\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pqT_{q}\rcoeffp q & =\rcoeffincp p,\quad p\in\mathcal{P},\\
\left(I-\trops T\right)\rcoeff & =\rcoeffinc,
\end{align*}
\end_inset
but this form is less suitable for numerical calculations due to the fact
that the regular VSWF expansion coefficients on both sides of the equation
are typically non-negligible even for large multipole degree
\begin_inset Formula $l$
\end_inset
, hence the truncation is not justified in this case.
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO less bulshit.
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
Translation operator
\begin_inset CommandInset label
LatexCommand label
name "subsec:Translation-operator"
\end_inset
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $\vect r_{1},\vect r_{2}$
\end_inset
be two different origins; a regular VSWF with origin
\begin_inset Formula $\vect r_{1}$
\end_inset
can be always expanded in terms of regular VSWFs with origin
\begin_inset Formula $\vect r_{2}$
\end_inset
as follows:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{1}\right)\right)=\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right),\label{eq:regular vswf translation}
\end{equation}
\end_inset
where an explicit formula for the regular translation operator
\begin_inset Formula $\tropr$
\end_inset
reads in eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:translation operator"
\end_inset
below.
For singular (outgoing) waves, the form of the expansion differs inside
and outside the ball
\begin_inset Formula $\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}$
\end_inset
:
\begin_inset Formula
\begin{eqnarray}
\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{1}\right)\right) & = & \begin{cases}
\sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\in\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}\\
\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{2}\right)\right), & \vect r\notin\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\left|\vect r_{1}\right|}
\end{cases},\label{eq:singular vswf translation}
\end{eqnarray}
\end_inset
where the singular translation operator
\begin_inset Formula $\trops$
\end_inset
has the same form as
\begin_inset Formula $\tropr$
\end_inset
in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:translation operator"
\end_inset
except the regular spherical Bessel functions
\begin_inset Formula $j_{l}$
\end_inset
are replaced with spherical Hankel functions
\begin_inset Formula $h_{l}^{(1)}$
\end_inset
.
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO note about expansion exactly on the sphere.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
As MSTMM deals most of the time with the
\emph on
expansion coefficients
\emph default
of fields
\begin_inset Formula $\rcoeffptlm p{\tau}lm,\outcoeffptlm p{\tau}lm$
\end_inset
in different origins
\begin_inset Formula $\vect r_{p}$
\end_inset
rather than with the VSWFs directly, let us write down how
\emph on
they
\emph default
transform under translation.
Let us assume the field can be in terms of regular waves everywhere, and
expand it in two different origins
\begin_inset Formula $\vect r_{p},\vect r_{q}$
\end_inset
,
\begin_inset Formula
\[
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{p}\right)\right)=\sum_{\tau',l',m'}\rcoeffptlm q{\tau'}{l'}{m'}\vswfrtlm{\tau}{'l'}{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right).
\]
\end_inset
Re-expanding the waves around
\begin_inset Formula $\vect r_{p}$
\end_inset
in terms of waves around
\begin_inset Formula $\vect r_{q}$
\end_inset
using
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:regular vswf translation"
\end_inset
,
\begin_inset Formula
\[
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\kappa\left(\vect r-\vect r_{q}\right)\right)
\]
\end_inset
and comparing to the original expansion around
\begin_inset Formula $\vect r_{q}$
\end_inset
, we obtain
\begin_inset Formula
\begin{equation}
\rcoeffptlm q{\tau'}{l'}{m'}=\sum_{\tau,l,m}\tropr_{\tau lm;\tau'l'm'}\left(\kappa\left(\vect r_{q}-\vect r_{p}\right)\right)\rcoeffptlm p{\tau}lm.\label{eq:regular vswf coefficient translation}
\end{equation}
\end_inset
For the sake of readability, we introduce a shorthand matrix form for
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:regular vswf coefficient translation"
\end_inset
\begin_inset Formula
\begin{equation}
\rcoeffp q=\troprp qp\rcoeffp p\label{eq:reqular vswf coefficient vector translation}
\end{equation}
\end_inset
(note the reversed indices
\begin_inset Note Note
status open
\begin_layout Plain Layout
; TODO redefine them in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:regular vswf translation"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:singular vswf translation"
\end_inset
?
\end_layout
\end_inset
) Similarly, if we had only outgoing waves in the original expansion around
\begin_inset Formula $\vect r_{p}$
\end_inset
, we would get
\begin_inset Formula
\begin{equation}
\rcoeffp q=\tropsp qp\outcoeffp p\label{eq:singular to regular vswf coefficient vector translation}
\end{equation}
\end_inset
for the expansion inside the ball
\begin_inset Formula $\openball{\left\Vert \vect r_{q}-\vect r_{p}\right\Vert }{\vect r_{p}}$
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
CHECKME
\end_layout
\end_inset
and
\begin_inset Formula
\begin{equation}
\outcoeffp q=\troprp qp\outcoeffp p\label{eq:singular to singular vswf coefficient vector translation-1}
\end{equation}
\end_inset
outside.
\end_layout
\begin_layout Standard
In our convention, the regular translation operator elements can be expressed
explicitly as
\begin_inset Formula
\begin{align}
\tropr_{\tau lm;\tau l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\nonumber \\
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)j_{\lambda}\left(d\right),\quad\tau'\ne\tau,\label{eq:translation operator}
\end{align}
\end_inset
and analogously the elements of the singular operator
\begin_inset Formula $\trops$
\end_inset
, having spherical Hankel functions (
\begin_inset Formula $h_{l}^{(1)}=j_{l}+iy_{l}$
\end_inset
) in the radial part instead of the regular bessel functions,
\begin_inset Formula
\begin{align}
\trops_{\tau lm;\tau l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\nonumber \\
\trops_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\ush{\lambda}{m-m'}\left(\uvec d\right)h_{\lambda}^{(1)}\left(d\right),\quad\tau'\ne\tau,\label{eq:translation operator singular}
\end{align}
\end_inset
where the constant factors in our convention read
\begin_inset Marginal
status open
\begin_layout Plain Layout
TODO check once again carefully for possible phase factors.
\end_layout
\end_inset
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
Original Kristensson's
\begin_inset Formula $C,D's$
\end_inset
from F.7:
\begin_inset Formula
\begin{multline*}
C_{ml,m'l'}\left(\vect d\right)=\frac{\left(-1\right)^{m+m'}}{2}\sqrt{\frac{\varepsilon_{m}\varepsilon_{m'}}{4}}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
\times\begin{pmatrix}l & l' & \lambda\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\\
D_{ml,m'l'}\left(\vect d\right)=\frac{\left(-1\right)^{m+m'}}{2}\sqrt{\frac{\varepsilon_{m}\varepsilon_{m'}}{4}}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
\times\begin{pmatrix}l & l' & \lambda-1\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\qquad\tau\ne\tau'.
\end{multline*}
\end_inset
where I have found a
\begin_inset Formula $-i$
\end_inset
factor in the
\begin_inset Formula $\tau\ne\tau'$
\end_inset
coefficients, so I force it here:
\begin_inset Formula
\begin{multline*}
C_{ml,m'l'}\left(\vect d\right)=\frac{\left(-1\right)^{m+m'}}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
\times\begin{pmatrix}l & l' & \lambda\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\\
D_{ml,m'l'}\left(\vect d\right)=-i\frac{\left(-1\right)^{m+m'}}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
\times\begin{pmatrix}l & l' & \lambda-1\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
\times j_{\lambda}\left(d\right)P_{\lambda}^{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\qquad\tau\ne\tau'.
\end{multline*}
\end_inset
TODO check influence of the
\begin_inset Formula $\varepsilon_{m}$
\end_inset
s, whether they can be just removed as above.
If we take our definition of spherical harmonics,
\begin_inset Formula
\[
\ush lm=\left(\frac{\left(l-m\right)!\left(2l+1\right)}{4\pi\left(l+m\right)!}\right)^{\frac{1}{2}}e^{im\phi}\dlmfFer lm\left(\cos\theta\right)
\]
\end_inset
so
\begin_inset Formula
\[
\dlmfFer{\lambda}{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}}=\sqrt{\frac{4\pi\left(\lambda+m-m'\right)!}{\left(\lambda-m+m'\right)!\left(2\lambda+1\right)}}\ush{\lambda}{m-m'}\left(\uvec d\right)
\]
\end_inset
and taking into account that we use the CS phase
\begin_inset Formula $\dlmfFer lm\left(\cos\theta\right)=\left(-1\right)^{m}P_{l}^{m}$
\end_inset
, and that
\begin_inset Formula $\left(-1\right)^{m+m'}=\left(-1\right)^{m-m'}$
\end_inset
we have
\end_layout
\begin_layout Plain Layout
\begin_inset Formula
\begin{multline*}
C_{ml,m'l'}\left(\vect d\right)=\frac{1}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
\times\begin{pmatrix}l & l' & \lambda\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
\times j_{\lambda}\left(d\right)\dlmfFer{\lambda}{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\\
D_{ml,m'l'}\left(\vect d\right)=-i\frac{1}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
\times\begin{pmatrix}l & l' & \lambda-1\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
\times j_{\lambda}\left(d\right)\dlmfFer{\lambda}{m-m'}\left(\cos\theta_{\uvec d}\right)e^{i\left(m-m'\right)\phi_{\uvec d}},\qquad\tau\ne\tau'.
\end{multline*}
\end_inset
\begin_inset Formula
\begin{multline*}
C_{ml,m'l'}\left(\vect d\right)=\frac{1}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
\times\begin{pmatrix}l & l' & \lambda\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
\times j_{\lambda}\left(d\right)\sqrt{\frac{4\pi\left(\lambda+m-m'\right)!}{\left(\lambda-m+m'\right)!\left(2\lambda+1\right)}}\ush{\lambda}{m-m'}\left(\uvec d\right),\\
D_{ml,m'l'}\left(\vect d\right)=-i\frac{1}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\left(2\lambda+1\right)\sqrt{\frac{\left(2l+1\right)\left(2l'+1\right)\left(\lambda-\left(m-m'\right)\right)!}{l\left(l+1\right)l'\left(l'+1\right)\left(\lambda+\left(m-m'\right)\right)!}}\times\\
\times\begin{pmatrix}l & l' & \lambda-1\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
\times j_{\lambda}\left(d\right)\sqrt{\frac{4\pi\left(\lambda+m-m'\right)!}{\left(\lambda-m+m'\right)!\left(2\lambda+1\right)}}\ush{\lambda}{m-m'}\left(\uvec d\right),\qquad\tau\ne\tau'.
\end{multline*}
\end_inset
\begin_inset Formula
\begin{multline*}
C_{ml,m'l'}\left(\vect d\right)=\frac{1}{2}\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
\times\begin{pmatrix}l & l' & \lambda\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
\times j_{\lambda}\left(d\right)\ush{\lambda}{m-m'}\left(\uvec d\right),\\
D_{ml,m'l'}\left(\vect d\right)=-i\frac{1}{2}\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
\times\begin{pmatrix}l & l' & \lambda-1\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
\times j_{\lambda}\left(d\right)\ush{\lambda}{m-m'}\left(\uvec d\right),\qquad\tau\ne\tau'.
\end{multline*}
\end_inset
and finally
\begin_inset Formula
\begin{multline*}
C_{ml,m'l'}\left(\vect d\right)=\sum_{\lambda=\left|l-l'\right|}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
\times\begin{pmatrix}l & l' & \lambda\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right)\times\\
\times j_{\lambda}\left(d\right)\ush{\lambda}{m-m'}\left(\uvec d\right),\\
D_{ml,m'l'}\left(\vect d\right)=-i\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
\times\begin{pmatrix}l & l' & \lambda-1\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}\times\\
\times j_{\lambda}\left(d\right)\ush{\lambda}{m-m'}\left(\uvec d\right),\qquad\tau\ne\tau'.
\end{multline*}
\end_inset
\end_layout
\end_inset
\begin_inset Formula
\begin{multline}
C_{lm;l'm'}^{\lambda}=\left(-1\right)^{\frac{l'-l+\lambda}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
\times\begin{pmatrix}l & l' & \lambda\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\left(l\left(l+1\right)+l'\left(l'+1\right)-\lambda\left(\lambda+1\right)\right),\\
D_{lm;l'm'}^{\lambda}=-i\left(-1\right)^{\frac{l'-l+\lambda+1}{2}}\sqrt{\frac{4\pi\left(2\lambda+1\right)\left(2l+1\right)\left(2l'+1\right)}{l\left(l+1\right)l'\left(l'+1\right)}}\times\\
\times\begin{pmatrix}l & l' & \lambda-1\\
0 & 0 & 0
\end{pmatrix}\begin{pmatrix}l & l' & \lambda\\
m & -m' & m'-m
\end{pmatrix}\sqrt{\lambda^{2}-\left(l-l'\right)^{2}}\sqrt{\left(l+l'+1\right)^{2}-\lambda^{2}}.\label{eq:translation operator constant factors}
\end{multline}
\end_inset
Here
\begin_inset Formula $\begin{pmatrix}l_{1} & l_{2} & l_{3}\\
m_{1} & m_{2} & m_{3}
\end{pmatrix}$
\end_inset
is the
\begin_inset Formula $3j$
\end_inset
symbol defined as in
\begin_inset CommandInset citation
LatexCommand cite
after "§34.2"
key "NIST:DLMF"
literal "false"
\end_inset
.
Importantly for practical calculations, these rather complicated coefficients
need to be evaluated only once up to the highest truncation order,
\begin_inset Formula $l,l'\le L$
\end_inset
.
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO write more here.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
In our convention, the regular translation operator is unitary,
\begin_inset Formula $\left(\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right)\right)^{-1}=\tropr_{\tau lm;\tau'l'm'}\left(-\vect d\right)=\tropr_{\tau'l'm';\tau lm}^{*}\left(\vect d\right)$
\end_inset
,
\begin_inset Note Note
status open
\begin_layout Plain Layout
todo different notation for the complex conjugation without transposition???
\end_layout
\end_inset
or in the per-particle matrix notation,
\begin_inset Formula
\begin{equation}
\troprp qp^{-1}=\troprp pq=\troprp qp^{\dagger}.\label{eq:regular translation unitarity}
\end{equation}
\end_inset
Note that truncation at finite multipole degree breaks the unitarity,
\begin_inset Formula $\truncated{\troprp qp}L^{-1}\ne\truncated{\troprp pq}L=\truncated{\troprp qp^{\dagger}}L$
\end_inset
, which has to be taken into consideration when evaluating quantities such
as absorption or scattering cross sections.
Similarly, the full regular operators can be composed
\begin_inset Note Note
status open
\begin_layout Plain Layout
better wording
\end_layout
\end_inset
,
\begin_inset Formula
\begin{equation}
\troprp ac=\troprp ab\troprp bc\label{eq:regular translation composition}
\end{equation}
\end_inset
but truncation breaks this,
\begin_inset Formula $\truncated{\troprp ac}L\ne\truncated{\troprp ab}L\truncated{\troprp bc}L.$
\end_inset
\end_layout
\begin_layout Subsubsection
Cross-sections (many scatterers)
\end_layout
\begin_layout Standard
For a system of many scatterers, Kristensson
\begin_inset CommandInset citation
LatexCommand cite
after "sect. 9.2.2"
key "kristensson_scattering_2016"
literal "false"
\end_inset
derives only the extinction cross section formula.
Let us re-derive it together with the many-particle scattering and absorption
cross sections.
First, let us take a ball containing all the scatterers at once,
\begin_inset Formula $\openball R{\vect r_{\square}}\supset\bigcup_{p\in\mathcal{P}}\closedball{R_{p}}{\vect r_{p}}$
\end_inset
.
Outside
\begin_inset Formula $\openball R{\vect r_{\square}}$
\end_inset
, we can describe the EM fields as if there was only a single scatterer,
\begin_inset Formula
\[
\vect E\left(\vect r\right)=\sum_{\tau,l,m}\left(\rcoeffptlm{\square}{\tau}lm\vswfrtlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{\square}\right)\right)+\outcoeffptlm{\square}{\tau}lm\vswfouttlm{\tau}lm\left(\kappa\left(\vect r-\vect r_{\square}\right)\right)\right),
\]
\end_inset
where
\begin_inset Formula $\rcoeffp{\square},\outcoeffp{\square}$
\end_inset
are the vectors of VSWF expansion coefficients of the incident and total
scattered fields, respectively, at origin
\begin_inset Formula $\vect r_{\square}$
\end_inset
.
In principle, one could evaluate
\begin_inset Formula $\outcoeffp{\square}$
\end_inset
using the translation operators and use the single-scatterer formulae
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:extincion CS single"
\end_inset
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:absorption CS single"
\end_inset
with
\begin_inset Formula $\rcoeffp{}=\rcoeffp{\square},\outcoeffp{}=\outcoeffp{\square}$
\end_inset
to obtain the cross sections.
However, this is not suitable for numerical evaluation with truncation
in multipole degree; hence we need to express them in terms of particle-wise
expansions
\begin_inset Formula $\rcoeffp p,\outcoeffp p$
\end_inset
.
The original incident field re-expanded around
\begin_inset Formula $p$
\end_inset
-th particle reads according to
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:regular vswf translation"
plural "false"
caps "false"
noprefix "false"
\end_inset
\begin_inset Formula
\begin{equation}
\rcoeffincp p=\troprp p{\square}\rcoeffp{\square}\label{eq:a_inc local from global}
\end{equation}
\end_inset
whereas the contributions of fields scattered from each particle expanded
around the global origin
\begin_inset Formula $\vect r_{\square}$
\end_inset
is, according to
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:singular vswf translation"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset Formula
\begin{equation}
\outcoeffp{\square}=\sum_{q\in\mathcal{P}}\troprp{\square}q\outcoeffp q.\label{eq:f global from local}
\end{equation}
\end_inset
Using the unitarity
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:regular translation unitarity"
plural "false"
caps "false"
noprefix "false"
\end_inset
and composition
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:regular translation composition"
plural "false"
caps "false"
noprefix "false"
\end_inset
properties, one has
\begin_inset Formula
\begin{align}
\rcoeffp{\square}^{\dagger}\outcoeffp{\square} & =\rcoeffincp p^{\dagger}\troprp p{\square}\troprp{\square}q\outcoeffp q=\rcoeffincp p^{\dagger}\sum_{q\in\mathcal{P}}\troprp pqf_{q}\nonumber \\
& =\sum_{q\in\mathcal{P}}\left(\troprp qp\rcoeffincp p\right)^{\dagger}f_{q}=\sum_{q\in\mathcal{P}}\rcoeffincp q^{\dagger}f_{q},\label{eq:atf form multiparticle}
\end{align}
\end_inset
where only the last expression is suitable for numerical evaluation with
truncated matrices, because the previous ones contain a translation operator
right next to an incident field coefficient vector
\begin_inset Note Note
status open
\begin_layout Plain Layout
(see Sec.
TODO)
\end_layout
\end_inset
.
Similarly,
\begin_inset Formula
\begin{align}
\left\Vert \outcoeffp{\square}\right\Vert ^{2} & =\outcoeffp{\square}^{\dagger}\outcoeffp{\square}=\sum_{p\in\mathcal{P}}\left(\troprp{\square}p\outcoeffp p\right)^{\dagger}\sum_{q\in\mathcal{P}}\troprp{\square}q\outcoeffp q\nonumber \\
& =\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q.\label{eq:f squared form multiparticle}
\end{align}
\end_inset
Substituting
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:atf form multiparticle"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:f squared form multiparticle"
plural "false"
caps "false"
noprefix "false"
\end_inset
into
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:scattering CS single"
plural "false"
caps "false"
noprefix "false"
\end_inset
and
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:absorption CS single"
plural "false"
caps "false"
noprefix "false"
\end_inset
, we get the many-particle expressions for extinction, scattering and absorption
cross sections suitable for numerical evaluation:
\begin_inset Formula
\begin{eqnarray}
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\outcoeffp p=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\left(\Tp p+\Tp p^{\dagger}\right)\rcoeffp p,\label{eq:extincion CS multi}\\
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q\nonumber \\
& & =\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\rcoeffp p^{\dagger}\Tp p^{\dagger}\troprp pq\Tp q\rcoeffp q,\label{eq:scattering CS multi}\\
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & -\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}}\troprp pq\outcoeffp q\right)\right).\nonumber \\
\label{eq:absorption CS multi}
\end{eqnarray}
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Formula $=\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\mbox{TODO}.$
\end_inset
\end_layout
\end_inset
An alternative approach to derive the absorption cross section is via a
power transport argument.
Note the direct proportionality between absorption cross section
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:absorption CS single"
plural "false"
caps "false"
noprefix "false"
\end_inset
and net radiated power for single scatterer
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Power transport"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset Formula $\sigma_{\mathrm{abs}}=-\eta_{0}\eta P/2\left\Vert \vect E_{0}\right\Vert ^{2}$
\end_inset
.
In the many-particle setup (with non-lossy background medium, so that only
the particles absorb), the total absorbed power is equal to the sum of
absorbed powers on each particle,
\begin_inset Formula $-P=\sum_{p\in\mathcal{P}}-P_{p}$
\end_inset
.
Using the power transport formula
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Power transport"
plural "false"
caps "false"
noprefix "false"
\end_inset
particle-wise gives
\begin_inset Formula
\begin{equation}
\sigma_{\mathrm{abs}}\left(\uvec k\right)=-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\left(\Re\left(\rcoeffp p^{\dagger}\outcoeffp p\right)+\left\Vert \outcoeffp p\right\Vert ^{2}\right)\label{eq:absorption CS multi alternative}
\end{equation}
\end_inset
which seems different from
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:absorption CS multi"
plural "false"
caps "false"
noprefix "false"
\end_inset
, but using
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:particle total incident field coefficient a"
plural "false"
caps "false"
noprefix "false"
\end_inset
, we can rewrite it as
\begin_inset Formula
\begin{align*}
\sigma_{\mathrm{abs}}\left(\uvec k\right) & =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffp p+\outcoeffp p\right)\right)\\
& =-\frac{1}{\kappa^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q+\outcoeffp p\right)\right).
\end{align*}
\end_inset
It is easy to show that all the terms of
\begin_inset Formula $\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q$
\end_inset
containing the singular spherical Bessel functions
\begin_inset Formula $y_{l}$
\end_inset
are imaginary,
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO better formulation
\end_layout
\end_inset
so that actually
\begin_inset Formula $\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\troprp pp\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q,$
\end_inset
proving that the expressions in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:absorption CS multi"
plural "false"
caps "false"
noprefix "false"
\end_inset
and
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:absorption CS multi alternative"
plural "false"
caps "false"
noprefix "false"
\end_inset
are equal.
\end_layout
\end_body
\end_document