159 lines
6.9 KiB
Python
Executable File
159 lines
6.9 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import math
|
|
from qpms.argproc import ArgParser
|
|
|
|
ap = ArgParser(['rectlattice2d', 'const_real_background', 'single_particle', 'single_lMax']) # const_real_background needed for calculation of the diffracted orders
|
|
ap.add_argument("-k", nargs=2, type=float, required=True, help='k vector', metavar=('K_X', 'K_Y'))
|
|
ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)")
|
|
ap.add_argument("--rank-tol", type=float, required=False)
|
|
ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)')
|
|
ap.add_argument("-t", "--rank-tolerance", type=float, default=1e11)
|
|
ap.add_argument("-c", "--min-candidates", type=int, default=1, help='always try at least this many eigenvalue candidates, even if their SVs in the rank tests are lower than rank_tolerance')
|
|
ap.add_argument("-T", "--residual-tolerance", type=float, default=2.)
|
|
ap.add_argument("-b", "--band-index", type=int, required=True, help="Argument's absolute value determines the empty lattice band order (counted from 1), -/+ determines whether the eigenvalues are searched below/above that empty lattice band.")
|
|
ap.add_argument("-f", "--interval-factor", type=float, default=0.1)
|
|
ap.add_argument("-N", type=int, default="150", help="Integration contour discretisation size")
|
|
ap.add_argument("-i", "--imaginary-aspect-ratio", type=float, default=1, help="Aspect ratio of the integration contour (Im/Re)")
|
|
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
|
|
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
|
|
|
|
a=ap.parse_args()
|
|
|
|
px, py = a.period
|
|
|
|
if a.kpi:
|
|
a.k[0] *= math.pi/px
|
|
a.k[1] *= math.pi/py
|
|
|
|
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
|
|
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
|
|
defaultprefix = "%s_p%gnmx%gnm_m%s_n%g_b%+d_k(%g_%g)um-1_L%d_cn%d" % (
|
|
particlestr, px*1e9, py*1e9, str(a.material), a.refractive_index, a.band_index, a.k[0]*1e-6, a.k[1]*1e-6, a.lMax, a.N)
|
|
|
|
import logging
|
|
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
|
|
|
|
import numpy as np
|
|
import qpms
|
|
from qpms.cybspec import BaseSpec
|
|
from qpms.cytmatrices import CTMatrix
|
|
from qpms.qpms_c import Particle, ScatteringSystem, empty_lattice_modes_xy
|
|
from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude
|
|
from qpms.constants import eV, hbar
|
|
eh = eV/hbar
|
|
|
|
def inside_ellipse(point_xy, centre_xy, halfaxes_xy):
|
|
x = point_xy[0] - centre_xy[0]
|
|
y = point_xy[1] - centre_xy[1]
|
|
ax = halfaxes_xy[0]
|
|
ay = halfaxes_xy[1]
|
|
return ((x/ax)**2 + (y/ay)**2) <= 1
|
|
|
|
a1 = ap.direct_basis[0]
|
|
a2 = ap.direct_basis[1]
|
|
|
|
#Particle positions
|
|
orig_x = [0]
|
|
orig_y = [0]
|
|
orig_xy = np.stack(np.meshgrid(orig_x,orig_y),axis=-1)
|
|
|
|
if a.material in lorentz_drude:
|
|
emg = EpsMuGenerator(lorentz_drude[a.material])
|
|
else: # constant refractive index
|
|
emg = EpsMuGenerator(EpsMu(a.material**2))
|
|
|
|
beta = np.array(a.k)
|
|
|
|
empty_freqs = empty_lattice_modes_xy(ap.background_epsmu, ap.reciprocal_basis2pi, np.array([0,0]), 1)
|
|
empty_freqs = empty_lattice_modes_xy(ap.background_epsmu, ap.reciprocal_basis2pi, beta, (1+abs(a.band_index)) * empty_freqs[1])
|
|
|
|
# make the frequencies in the list unique
|
|
empty_freqs = list(empty_freqs)
|
|
i = 0
|
|
while i < len(empty_freqs) - 1:
|
|
if math.isclose(empty_freqs[i], empty_freqs[i+1], rel_tol=1e-13):
|
|
del empty_freqs[i+1]
|
|
else:
|
|
i += 1
|
|
|
|
logging.info("Empty freqs: %s", str(empty_freqs))
|
|
if a.band_index > 0:
|
|
top = empty_freqs[a.band_index]
|
|
bottom = empty_freqs[a.band_index - 1]
|
|
lebeta_om = bottom
|
|
else: # a.band_index < 0
|
|
top = empty_freqs[abs(a.band_index) - 1]
|
|
bottom = empty_freqs[abs(a.band_index) - 2] if abs(a.band_index) > 1 else 0.
|
|
lebeta_om = top
|
|
#print(top,bottom,lebeta_om)
|
|
freqradius = .5 * (top - bottom) * a.interval_factor
|
|
|
|
centfreq = bottom + freqradius if a.band_index > 0 else top - freqradius
|
|
|
|
bspec = BaseSpec(lMax = a.lMax)
|
|
pp = Particle(orig_xy[0][0], t = ap.tmgen, bspec=bspec)
|
|
|
|
ss, ssw = ScatteringSystem.create([pp], ap.background_emg, centfreq, latticebasis = ap.direct_basis)
|
|
|
|
if freqradius == 0:
|
|
raise ValueError("Integration contour radius is set to zero. Are you trying to look below the lowest empty lattice band at the gamma point?")
|
|
|
|
freqradius *= (1-1e-13) # to not totally touch the singularities
|
|
|
|
with qpms.pgsl_ignore_error(15):
|
|
res = ss.find_modes(centfreq, freqradius, freqradius * a.imaginary_aspect_ratio,
|
|
blochvector = a.k, contour_points = a.N, rank_tol = a.rank_tolerance,
|
|
res_tol = a.residual_tolerance, rank_min_sel = a.min_candidates)
|
|
|
|
logging.info("Eigenfrequencies found: %s" % str(res['eigval']))
|
|
|
|
res['inside_contour'] = inside_ellipse((res['eigval'].real, res['eigval'].imag),
|
|
(centfreq.real, centfreq.imag), (freqradius, freqradius * a.imaginary_aspect_ratio))
|
|
|
|
res['refractive_index_internal'] = [emg(om).n for om in res['eigval']]
|
|
|
|
#del res['omega'] If contour points are not needed...
|
|
#del res['ImTW'] # not if dbg=false anyway
|
|
outfile = defaultprefix + ".npz" if a.output is None else a.output
|
|
np.savez(outfile, meta=vars(a), empty_freqs=np.array(empty_freqs), **res)
|
|
logging.info("Saved to %s" % outfile)
|
|
|
|
|
|
if a.plot or (a.plot_out is not None):
|
|
imcut = np.linspace(0, -freqradius)
|
|
recut1 = np.sqrt(lebeta_om**2+imcut**2) # incomplete Gamma-related cut
|
|
recut2 = np.sqrt((lebeta_om/2)**2-imcut**2) + lebeta_om/2 # odd-power-lilgamma-related cut
|
|
|
|
import matplotlib
|
|
matplotlib.use('pdf')
|
|
from matplotlib import pyplot as plt
|
|
|
|
fig = plt.figure()
|
|
ax = fig.add_subplot(111,)
|
|
#ax.plot(res['omega'].real/eh, res['omega'].imag/eh*1e3, ':') #res['omega'] not implemented in ScatteringSystem
|
|
ax.add_artist(matplotlib.patches.Ellipse((centfreq.real/eh, centfreq.imag/eh*1e3),
|
|
2*freqradius/eh, 2*freqradius*a.imaginary_aspect_ratio/eh*1e3, fill=False,
|
|
ls=':'))
|
|
ax.scatter(x=res['eigval'].real/eh, y=res['eigval'].imag/eh*1e3 , c = res['inside_contour']
|
|
)
|
|
ax.plot(recut1/eh, imcut/eh*1e3)
|
|
ax.plot(recut2/eh, imcut/eh*1e3)
|
|
for i,om in enumerate(res['eigval']):
|
|
ax.annotate(str(i), (om.real/eh, om.imag/eh*1e3))
|
|
xmin = np.amin(res['eigval'].real)/eh
|
|
xmax = np.amax(res['eigval'].real)/eh
|
|
xspan = xmax-xmin
|
|
ymin = np.amin(res['eigval'].imag)/eh*1e3
|
|
ymax = np.amax(res['eigval'].imag)/eh*1e3
|
|
yspan = ymax-ymin
|
|
ax.set_xlim([xmin-.1*xspan, xmax+.1*xspan])
|
|
ax.set_ylim([ymin-.1*yspan, ymax+.1*yspan])
|
|
ax.set_xlabel('$\hbar \Re \omega / \mathrm{eV}$')
|
|
ax.set_ylabel('$\hbar \Im \omega / \mathrm{meV}$')
|
|
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
|
|
fig.savefig(plotfile)
|
|
|
|
exit(0)
|
|
|