210 lines
6.8 KiB
C
210 lines
6.8 KiB
C
#include <assert.h>
|
|
#include "qpms_specfunc.h"
|
|
#include <stdlib.h>
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
#include "kahansum.h"
|
|
#include <gsl/gsl_sf_bessel.h>
|
|
#include <complex.h>
|
|
#include "qpms_error.h"
|
|
#include <amos.h>
|
|
|
|
#ifndef M_LN2
|
|
#define M_LN2 0.69314718055994530942 /* log_e 2 */
|
|
#endif
|
|
|
|
static inline complex double ipow(int x) {
|
|
return cpow(I,x);
|
|
}
|
|
|
|
#if 0
|
|
// Inspired by scipy/special/_spherical_bessel.pxd
|
|
static inline complex double spherical_jn(qpms_l_t l, complex double z) {
|
|
if (isnan(creal(z)) || isnan(cimag(z))) return NAN+I*NAN;
|
|
if (l < 0) QPMS_WTF;
|
|
if (fpclassify(creal(z)) == FP_INFINITE)
|
|
if(0 == cimag(z))
|
|
return 0;
|
|
else
|
|
return INFINITY + I * INFINITY;
|
|
if (z == 0)
|
|
if (l == 0) return 1;
|
|
else return 0;
|
|
return csqrt(M_PI_2/z) * zbesj(l + .5, z);
|
|
}
|
|
|
|
static inline complex double spherical_yn(qpms_l_t l, complex double z) {
|
|
if (isnan(creal(z)) || isnan(cimag(z))) return NAN+I*NAN;
|
|
if (l < 0) QPMS_WTF;
|
|
if (fpclassify(creal(z)) == FP_INFINITE)
|
|
if(0 == cimag(z))
|
|
return 0;
|
|
else
|
|
return INFINITY + I * INFINITY;
|
|
if (z == 0)
|
|
return NAN;
|
|
return csqrt(M_PI_2/z) * zbesy(l + .5, z);
|
|
}
|
|
#endif
|
|
|
|
// There is a big issue with gsl's precision of spherical bessel function; these have to be implemented differently
|
|
qpms_errno_t qpms_sph_bessel_realx_fill(qpms_bessel_t typ, qpms_l_t lmax, double x, complex double *result_array) {
|
|
int retval;
|
|
double tmparr[lmax+1];
|
|
switch(typ) {
|
|
case QPMS_BESSEL_REGULAR:
|
|
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
|
|
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
|
|
return retval;
|
|
break;
|
|
case QPMS_BESSEL_SINGULAR: //FIXME: is this precise enough? Would it be better to do it one-by-one?
|
|
retval = gsl_sf_bessel_yl_array(lmax,x,tmparr);
|
|
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
|
|
return retval;
|
|
break;
|
|
case QPMS_HANKEL_PLUS:
|
|
case QPMS_HANKEL_MINUS:
|
|
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
|
|
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
|
|
if(retval) return retval;
|
|
retval = gsl_sf_bessel_yl_array(lmax, x, tmparr);
|
|
if (typ==QPMS_HANKEL_PLUS)
|
|
for (int l = 0; l <= lmax; ++l) result_array[l] += I * tmparr[l];
|
|
else
|
|
for (int l = 0; l <= lmax; ++l) result_array[l] +=-I * tmparr[l];
|
|
return retval;
|
|
break;
|
|
default:
|
|
abort();
|
|
//return GSL_EDOM;
|
|
}
|
|
assert(0);
|
|
}
|
|
|
|
// TODO DOC
|
|
qpms_errno_t qpms_sph_bessel_fill(qpms_bessel_t typ, qpms_l_t lmax, complex double x, complex double *res) {
|
|
if(!cimag(x))
|
|
return qpms_sph_bessel_realx_fill(typ, lmax, creal(x), res);
|
|
else if (isnan(creal(x)) || isnan(cimag(x)))
|
|
for(qpms_l_t l = 0; l <= lmax; ++l) res[l] = NAN + I*NAN;
|
|
else if (lmax < 0) QPMS_WTF;
|
|
else if (fpclassify(creal(x)) == FP_INFINITE)
|
|
for(qpms_l_t l = 0; l <= lmax; ++l) res[l] = INFINITY + I * INFINITY;
|
|
else {
|
|
const DOUBLE_PRECISION_t zr = creal(x), zi = cimag(x), fnu = 0.5;
|
|
const INTEGER_t n = lmax + 1, kode = 1 /* No exponential scaling */;
|
|
DOUBLE_PRECISION_t cyr[n], cyi[n];
|
|
INTEGER_t ierr, nz;
|
|
unsigned int kindchar; // Only for error output
|
|
const complex double prefac = csqrt(M_PI_2/x);
|
|
switch(typ) {
|
|
case QPMS_BESSEL_REGULAR:
|
|
kindchar = 'j';
|
|
amos_zbesj(&zr, &zi, &fnu, &kode, &n, cyr, cyi, &nz, &ierr);
|
|
break;
|
|
case QPMS_BESSEL_SINGULAR:
|
|
kindchar = 'y';
|
|
{
|
|
DOUBLE_PRECISION_t cwrkr[lmax + 1], cwrki[lmax + 1];
|
|
amos_zbesy(&zr, &zi, &fnu, &kode, &n, cyr, cyi, &nz, cwrkr, cwrki, &ierr);
|
|
}
|
|
break;
|
|
case QPMS_HANKEL_PLUS:
|
|
case QPMS_HANKEL_MINUS:
|
|
kindchar = 'h';
|
|
{
|
|
const INTEGER_t m = (typ == QPMS_HANKEL_PLUS) ? 1 : 2;
|
|
amos_zbesh(&zr, &zi, &fnu, &kode, &m, &n, cyr, cyi, &nz, &ierr);
|
|
}
|
|
break;
|
|
default:
|
|
QPMS_WTF;
|
|
}
|
|
// TODO check for underflows? (nz != 0)
|
|
if (ierr == 0 || ierr == 3) {
|
|
for (qpms_l_t l = 0; l <= lmax; ++l)
|
|
res[l] = prefac * (cyr[l] + I * cyi[l]);
|
|
if (ierr == 3)
|
|
QPMS_WARN("Amos's zbes%c computation done but losses of significance "
|
|
"by argument reduction produce less than half of machine accuracy.",
|
|
kindchar);
|
|
return QPMS_SUCCESS; //TODO maybe something else if ierr == 3
|
|
}
|
|
else
|
|
QPMS_PR_ERROR("Amos's zbes%c failed with ierr == %d.",
|
|
kindchar, (int) ierr);
|
|
}
|
|
return QPMS_SUCCESS;
|
|
}
|
|
|
|
static inline ptrdiff_t akn_index(qpms_l_t n, qpms_l_t k) {
|
|
assert(k <= n);
|
|
return ((ptrdiff_t) n + 1) * n / 2 + k;
|
|
}
|
|
static inline ptrdiff_t bkn_index(qpms_l_t n, qpms_l_t k) {
|
|
assert(k <= n+1);
|
|
return ((ptrdiff_t) n + 2) * (n + 1) / 2 - 1 + k;
|
|
}
|
|
|
|
static inline qpms_errno_t qpms_sbessel_calculator_ensure_lMax(qpms_sbessel_calculator_t *c, qpms_l_t lMax) {
|
|
if (lMax <= c->lMax)
|
|
return QPMS_SUCCESS;
|
|
else {
|
|
if ( NULL == (c->akn = realloc(c->akn, sizeof(double) * akn_index(lMax + 2, 0))))
|
|
abort();
|
|
//if ( NULL == (c->bkn = realloc(c->bkn, sizeof(complex double) * bkn_index(lMax + 1, 0))))
|
|
// abort();
|
|
for(qpms_l_t n = c->lMax+1; n <= lMax + 1; ++n)
|
|
for(qpms_l_t k = 0; k <= n; ++k)
|
|
c->akn[akn_index(n,k)] = exp(lgamma(n + k + 1) - k*M_LN2 - lgamma(k + 1) - lgamma(n - k + 1));
|
|
// ... TODO derivace
|
|
c->lMax = lMax;
|
|
return QPMS_SUCCESS;
|
|
}
|
|
}
|
|
|
|
complex double qpms_sbessel_calc_h1(qpms_sbessel_calculator_t *c, qpms_l_t n, complex double x) {
|
|
if(QPMS_SUCCESS != qpms_sbessel_calculator_ensure_lMax(c, n))
|
|
abort();
|
|
complex double z = I/x;
|
|
complex double result = 0;
|
|
for (qpms_l_t k = n; k >= 0; --k)
|
|
// can we use fma for complex?
|
|
//result = fma(result, z, c->akn(n, k));
|
|
result = result * z + c->akn[akn_index(n,k)];
|
|
result *= z * ipow(-n-2) * cexp(I * x);
|
|
return result;
|
|
}
|
|
|
|
qpms_errno_t qpms_sbessel_calc_h1_fill(qpms_sbessel_calculator_t * const c,
|
|
const qpms_l_t lMax, const complex double x, complex double * const target) {
|
|
if(QPMS_SUCCESS != qpms_sbessel_calculator_ensure_lMax(c, lMax))
|
|
abort();
|
|
memset(target, 0, sizeof(complex double) * lMax);
|
|
complex double kahancomp[lMax];
|
|
memset(kahancomp, 0, sizeof(complex double) * lMax);
|
|
for(qpms_l_t k = 0; k <= lMax; ++k){
|
|
double xp = cpow(x, -k-1);
|
|
for(qpms_l_t l = k; l <= lMax; ++l)
|
|
ckahanadd(target + l, kahancomp + l, c->akn[akn_index(l,k)] * xp * ipow(k-l-1));
|
|
}
|
|
complex double eix = cexp(I * x);
|
|
for (qpms_l_t l = 0; l <= lMax; ++l)
|
|
target[l] *= eix;
|
|
return QPMS_SUCCESS;
|
|
}
|
|
|
|
qpms_sbessel_calculator_t *qpms_sbessel_calculator_init() {
|
|
qpms_sbessel_calculator_t *c = malloc(sizeof(qpms_sbessel_calculator_t));
|
|
c->akn = NULL;
|
|
//c->bkn = NULL;
|
|
c->lMax = -1;
|
|
return c;
|
|
}
|
|
|
|
void qpms_sbessel_calculator_pfree(qpms_sbessel_calculator_t *c) {
|
|
if(c->akn) free(c->akn);
|
|
//if(c->bkn) free(c->bkn);
|
|
free(c);
|
|
}
|