qpms/qpms/tmatrices.h

693 lines
29 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*! \file tmatrices.h
* \brief T-matrices for scattering systems.
*/
#ifndef TMATRICES_H
#define TMATRICES_H
// #include "qpms_types.h" // included via materials.h
// #include <gsl/gsl_spline.h> // included via materials.h
#include "materials.h"
#include <stdio.h>
struct qpms_finite_group_t;
typedef struct qpms_finite_group_t qpms_finite_group_t;
/// Returns a pointer to the beginning of the T-matrix row \a rowno.
static inline complex double *qpms_tmatrix_row(qpms_tmatrix_t *t, size_t rowno){
return t->m + (t->spec->n * rowno);
}
/// Initialises a zero T-matrix.
/** \sa qpms_tmatrix_init_from_generator()
* \sa qpms_tmatrix_init_from_function() */
qpms_tmatrix_t *qpms_tmatrix_init(const qpms_vswf_set_spec_t *bspec);
/// Copies a T-matrix, allocating new array for the T-matrix data.
qpms_tmatrix_t *qpms_tmatrix_copy(const qpms_tmatrix_t *T);
/// Copies a T-matrix contents between two pre-allocated T-matrices.
/** orig->spec and dest->spec must be identical.
*
* \returns \a dest
*/
qpms_tmatrix_t *qpms_tmatrix_mv(qpms_tmatrix_t *dest, const qpms_tmatrix_t *orig);
/// Destroys a T-matrix.
void qpms_tmatrix_free(qpms_tmatrix_t *t);
/// Check T-matrix equality/similarity.
/**
* This function actually checks for identical vswf specs.
* TODO define constants with "default" atol, rtol for this function.
*/
bool qpms_tmatrix_isclose(const qpms_tmatrix_t *T1, const qpms_tmatrix_t *T2,
const double rtol, const double atol);
/// Creates a T-matrix from another matrix and a symmetry operation.
/** The symmetry operation is expected to be a unitary (square)
* matrix \a M with the same
* VSWF basis spec as the T-matrix (i.e. \a t->spec). The new T-matrix will then
* correspond to CHECKME \f[ T' = MTM^\dagger \f]
*/
qpms_tmatrix_t *qpms_tmatrix_apply_symop(
const qpms_tmatrix_t *T, ///< the original T-matrix
const complex double *M ///< the symmetry op matrix in row-major format
);
/// Applies a symmetry operation onto a T-matrix, rewriting the original T-matrix data.
/** The symmetry operation is expected to be a unitary (square)
* matrix \a M with the same
* VSWF basis spec as the T-matrix (i.e. \a t->spec). The new T-matrix will then
* correspond to CHECKME \f[ T' = MTM^\dagger \f]
*/
qpms_tmatrix_t *qpms_tmatrix_apply_symop_inplace(
qpms_tmatrix_t *T, ///< the original T-matrix
const complex double *M ///< the symmetry op matrix in row-major format
);
/// Symmetrizes a T-matrix with an involution symmetry operation.
/** The symmetry operation is expected to be a unitary (square)
* matrix \a M with the same
* VSWF basis spec as the T-matrix (i.e. \a t->spec). The new T-matrix will then
* correspond to CHECKME \f[ T' = \frac{T + MTM^\dagger}{2} \f]
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_involution(
const qpms_tmatrix_t *T, ///< the original T-matrix
const complex double *M ///< the symmetry op matrix in row-major format
);
/// Creates a \f$ C_\infty \f$ -symmetrized version of a T-matrix.
/**
* \f[ {T'}_{tlm}^{\tau\lambda\mu} = T_{tlm}^{\tau\lambda\mu} \delta_{m\mu} \f]
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_C_inf(
const qpms_tmatrix_t *T ///< the original T-matrix
);
/// Creates a \f$ C_N \f$ -symmetrized version of a T-matrix.
/**
* \f[ {T'}_{tlm}^{\tau\lambda\mu} = \begin{cases}
* T{}_{lm}^{\lambda\mu} & (m-\mu)\mod N=0\\
* 0 & (m-\mu)\mod N\ne0
* \end{cases} . \f]
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_C_N(
const qpms_tmatrix_t *T, ///< the original T-matrix
int N ///< number of z-axis rotations in the group
);
/// Symmetrizes a T-matrix with an involution symmetry operation, rewriting the original one.
/** The symmetry operation is expected to be a unitary (square)
* matrix \a M with the same
* VSWF basis spec as the T-matrix (i.e. \a t->spec). The new T-matrix will then
* correspond to CHECKME \f[ T' = \frac{T + MTM^\dagger}{2} \f]
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_involution_inplace(
qpms_tmatrix_t *T, ///< the original T-matrix
const complex double *M ///< the symmetry op matrix in row-major format
);
/// Creates a \f$ C_\infty \f$ -symmetrized version of a T-matrix, rewriting the original one.
/**
* \f[ {T'}_{tlm}^{\tau\lambda\mu} = T_{tlm}^{\tau\lambda\mu} \delta_{m\mu} \f]
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_C_inf_inplace(
qpms_tmatrix_t *T ///< the original T-matrix
);
/// Creates a \f$ C_N \f$ -symmetrized version of a T-matrix, rewriting the original one.
/**
* \f[ {T'}_{tlm}^{\tau\lambda\mu} = \begin{cases}
* T{}_{lm}^{\lambda\mu} & (m-\mu)\mod N=0\\
* 0 & (m-\mu)\mod N\ne0
* \end{cases} . \f]
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_C_N_inplace(
qpms_tmatrix_t *T, ///< the original T-matrix
int N ///< number of z-axis rotations in the group
);
/// Reads an open scuff-tmatrix generated file.
/**
* \a *freqs, \a *freqs_su, \a *tmatrices_array and \a *tmdata
* arrays are allocated by this function
* and have to be freed by the caller after use.
* \a freqs_su and \a tmatrices_array can be NULL, in that case
* the respective arrays are not filled nor allocated.
*
* The contents of tmatrices_array is NOT
* supposed to be freed element per element.
*
* TODO more checks and options regarding NANs etc.
*
*/
qpms_errno_t qpms_load_scuff_tmatrix(
const char *path, ///< Path to the TMatrix file
const qpms_vswf_set_spec_t *bspec, ///< VSWF set spec
size_t *n, ///< Number of successfully loaded t-matrices
double **freqs, ///< Frequencies in SI units..
double **freqs_su, ///< Frequencies in SCUFF units (optional).
/// The resulting T-matrices (optional).
qpms_tmatrix_t **tmatrices_array,
complex double **tmdata ///< The T-matrices raw contents
);
/// Tells whether qpms_load_scuff_tmatrix should crash if fopen() fails.
/** If true (default), the function causes the program
* die e.g. when the tmatrix file
* does not exists.
*
* If false, it does nothing and returns an appropriate error value instead.
* This is desirable e.g. when used in Python (so that proper exception can
* be thrown).
*/
extern bool qpms_load_scuff_tmatrix_crash_on_failure;
/// Loads a scuff-tmatrix generated file.
/** A simple wrapper over qpms_read_scuff_tmatrix() that needs a
* path instead of open FILE.
*
* The T-matrix is transformed from the VSWF basis defined by
* QPMS_NORMALISATION_CONVENTION_SCUFF into the basis defined
* by convention bspec->norm.
*
* Right now, bspec->norm with real or "reversed complex" spherical
* harmonics are not supported.
*/
qpms_errno_t qpms_read_scuff_tmatrix(
FILE *f, ///< An open stream with the T-matrix data.
const qpms_vswf_set_spec_t *bspec, ///< VSWF set spec
size_t *n, ///< Number of successfully loaded t-matrices
double **freqs, ///< Frequencies in SI units.
double **freqs_su, ///< Frequencies in SCUFF units (optional).
/// The resulting T-matrices (optional).
qpms_tmatrix_t **tmatrices_array,
/// The T-matrices raw contents.
/** The coefficient of outgoing wave defined by
* \a bspec->ilist[desti] as a result of incoming wave
* \a bspec->ilist[srci] at frequency \a (*freqs)[fi]
* is accessed via
* (*tmdata)[bspec->n*bspec->n*fi + desti*bspec->n + srci].
*/
complex double ** tmdata
);
/// In-place application of point group elements on raw T-matrix data.
/** \a tmdata can be e.g. obtained by qpms_load_scuff_tmatrix().
* The \a symops array should always contain all elements of a finite
* point (sub)group, including the identity operation.
*
* TODO more doc.
*/
qpms_errno_t qpms_symmetrise_tmdata_irot3arr(
complex double *tmdata, const size_t tmcount,
const qpms_vswf_set_spec_t *bspec,
size_t n_symops,
const qpms_irot3_t *symops
);
/// In-place application of a point group on raw T-matrix data.
/** This does the same as qpms_symmetrise_tmdata_irot3arr(),
* but takes a valid finite point group as an argument.
*
* TODO more doc.
*/
qpms_errno_t qpms_symmetrise_tmdata_finite_group(
complex double *tmdata, const size_t tmcount,
const qpms_vswf_set_spec_t *bspec,
const qpms_finite_group_t *pointgroup
);
/// In-place application of point group elements on a T-matrix.
/** The \a symops array should always contain all elements of a finite
* point (sub)group, including the identity operation.
*
* TODO more doc.
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_irot3arr_inplace(
qpms_tmatrix_t *T,
size_t n_symops,
const qpms_irot3_t *symops
);
/// In-place application of point group elements on a T-matrix.
/** This does the same as qpms_tmatrix_symmetrise_irot3arr(),
* but takes a valid finite point group as an argument.
*
* TODO more doc.
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_finite_group_inplace(
qpms_tmatrix_t *T,
const qpms_finite_group_t *pointgroup
);
/// Application of T-matrix on a vector of incident field coefficients, \f$ f = Ta \f$.
complex double *qpms_apply_tmatrix(
complex double *f_target, ///< Scattered field coefficient array of size T->spec->n; if NULL, a new one is allocated.
const complex double *a, ///< Incident field coefficient array of size T->spec->n.
const qpms_tmatrix_t *T ///< T-matrix \a T to apply.
);
/// Generic T-matrix generator function that fills a pre-initialised qpms_tmatrix_t given a frequency.
/** Implemented by:
* qpms_tmatrix_generator_axialsym()
* qpms_tmatrix_generator_interpolator()
* qpms_tmatrix_generator_sphere()
* qpms_tmatrix_generator_constant()
*/
typedef struct qpms_tmatrix_generator_t {
qpms_errno_t (*function) (qpms_tmatrix_t *t, ///< T-matrix to fill.
complex double omega, ///< Angular frequency.
const void *params ///< Implementation dependent parameters.
);
const void *params; ///< Parameter pointer passed to the function.
} qpms_tmatrix_generator_t;
/// Initialises and evaluates a new T-matrix using a generator.
qpms_tmatrix_t *qpms_tmatrix_init_from_generator(
const qpms_vswf_set_spec_t *bspec,
qpms_tmatrix_generator_t gen,
complex double omega);
/// Implementation of qpms_matrix_generator_t that just copies a constant matrix.
/** N.B. this does almost no checks at all, so use it only for t-matrices with
* the same base spec.
*/
qpms_errno_t qpms_tmatrix_generator_constant(qpms_tmatrix_t *t,
complex double omega,
/// Source T-matrix, real type is (const qpms_tmatrix_t*).
const void *tmatrix_orig
);
/* Fuck this, include the whole <gsl/gsl_spline.h>
typedef struct gsl_spline gsl_spline; // Forward declaration for the interpolator struct
typedef struct gsl_interp_type gsl_interp_type;
extern const gsl_interp_type * gsl_interp_linear;
extern const gsl_interp_type * gsl_interp_polynomial;
extern const gsl_interp_type * gsl_interp_cspline;
extern const gsl_interp_type * gsl_interp_cspline_periodic;
extern const gsl_interp_type * gsl_interp_akima;
extern const gsl_interp_type * gsl_interp_akima_periodic;
extern const gsl_interp_type * gsl_interp_steffen;
*/
// struct gsl_interp_accel; // use if lookup proves to be too slow
typedef struct qpms_tmatrix_interpolator_t {
const qpms_vswf_set_spec_t *bspec;
//bool owns_bspec;
gsl_spline **splines_real; ///< There will be a spline object for each nonzero element
gsl_spline **splines_imag; ///< There will be a spline object for each nonzero element
// gsl_interp_accel **accel_real;
// gsl_interp_accel **accel_imag;
} qpms_tmatrix_interpolator_t;
/// Free a T-matrix interpolator.
void qpms_tmatrix_interpolator_free(qpms_tmatrix_interpolator_t *interp);
/// Fills an existing T-matrix with new interpolated values.
qpms_errno_t qpms_tmatrix_interpolator_eval_fill(qpms_tmatrix_t *target, ///< T-matrix to be updated, not NULL.
const qpms_tmatrix_interpolator_t *interp, double freq);
/// Evaluate a T-matrix interpolated value.
/** The result is to be freed using qpms_tmatrix_free().*/
qpms_tmatrix_t *qpms_tmatrix_interpolator_eval(const qpms_tmatrix_interpolator_t *interp, double freq);
/// Create a T-matrix interpolator from frequency and T-matrix arrays.
qpms_tmatrix_interpolator_t *qpms_tmatrix_interpolator_create(size_t n, ///< Number of freqs and T-matrices provided.
const double *freqs, const qpms_tmatrix_t *tmatrices_array, ///< N.B. array of qpms_tmatrix_t, not pointers!
const gsl_interp_type *iptype
//, bool copy_bspec ///< if true, copies its own copy of basis spec from the first T-matrix.
/*, ...? */);
/// qpms_tmatrix_interpolator for qpms_tmatrix_generator_t.
/** As in qpms_tmatrix_interpolator_eval(), the imaginary part of frequency is discarded!
*/
qpms_errno_t qpms_tmatrix_generator_interpolator(qpms_tmatrix_t *t, ///< T-matrix to fill.
complex double omega, ///< Angular frequency.
const void *interpolator ///< Parameter of type qpms_tmatrix_interpolator_t *.
);
/// Calculates the reflection Mie-Lorentz coefficients for a spherical particle.
/**
* This function is based on the previous python implementation mie_coefficients() from qpms_p.py,
* so any bugs therein should affect this function as well and perhaps vice versa.
*
* Most importantly, the case of magnetic material, \a mu_i != 0 or \a mu_e != 0 has never been tested
* and might give wrong results.
*
* \return Array with the Mie-Lorentz reflection coefficients in the order determined by bspec.
* If \a target was not NULL, this is target, otherwise a newly allocated array.
*
* TODO better doc.
*/
complex double *qpms_mie_coefficients_reflection(
complex double *target, ///< Target array of length bspec->n. If NULL, a new one will be allocated.
const qpms_vswf_set_spec_t *bspec, ///< Defines which of the coefficients are calculated.
double a, ///< Radius of the sphere.
complex double k_i, ///< Wave number of the internal material of the sphere.
complex double k_e, ///< Wave number of the surrounding medium.
complex double mu_i, ///< Relative permeability of the sphere material.
complex double mu_e, ///< Relative permeability of the surrounding medium.
qpms_bessel_t J_ext, ///< Kind of the "incoming" waves. Most likely QPMS_BESSEL_REGULAR.
qpms_bessel_t J_scat ///< Kind of the "scattered" waves. Most likely QPMS_HANKEL_PLUS.
);
/// Replaces the contents of an existing T-matrix with that of a spherical nanoparticle calculated using the Lorentz-mie theory.
qpms_errno_t qpms_tmatrix_spherical_fill(qpms_tmatrix_t *t, ///< T-matrix whose contents are to be replaced. Not NULL.
double a, ///< Radius of the sphere.
complex double k_i, ///< Wave number of the internal material of the sphere.
complex double k_e, ///< Wave number of the surrounding medium.
complex double mu_i, ///< Relative permeability of the sphere material.
complex double mu_e ///< Relative permeability of the surrounding medium.
);
/// Parameter structure for qpms_tmatrix_generator_sphere().
typedef struct qpms_tmatrix_generator_sphere_param_t {
qpms_epsmu_generator_t outside;
qpms_epsmu_generator_t inside;
double radius;
} qpms_tmatrix_generator_sphere_param_t;
/// T-matrix generator for spherical particles using Lorentz-Mie solution.
qpms_errno_t qpms_tmatrix_generator_sphere(qpms_tmatrix_t *t,
complex double omega,
const void *params ///< Of type qpms_tmatrix_generator_sphere_param_t.
);
/// Creates a new T-matrix of a spherical particle using the Lorentz-Mie theory.
static inline qpms_tmatrix_t *qpms_tmatrix_spherical(
const qpms_vswf_set_spec_t *bspec,
double a, ///< Radius of the sphere.
complex double k_i, ///< Wave number of the internal material of the sphere.
complex double k_e, ///< Wave number of the surrounding medium.
complex double mu_i, ///< Relative permeability of the sphere material.
complex double mu_e ///< Relative permeability of the surrounding medium.
) {
qpms_tmatrix_t *t = qpms_tmatrix_init(bspec);
qpms_tmatrix_spherical_fill(t, a, k_i, k_e, mu_i, mu_e);
return t;
}
/// Convenience function to calculate T-matrix of a non-magnetic spherical particle using the permittivity values, replacing existing T-matrix data.
qpms_errno_t qpms_tmatrix_spherical_mu0_fill(
qpms_tmatrix_t *t, ///< T-matrix whose contents are to be replaced. Not NULL.
double a, ///< Radius of the sphere.
double omega, ///< Angular frequency.
complex double epsilon_fg, ///< Relative permittivity of the sphere.
complex double epsilon_bg ///< Relative permittivity of the background medium.
);
/// Convenience function to calculate T-matrix of a non-magnetic spherical particle using the permittivity values.
static inline qpms_tmatrix_t *qpms_tmatrix_spherical_mu0(
const qpms_vswf_set_spec_t *bspec,
double a, ///< Radius of the sphere.
double omega, ///< Angular frequency.
complex double epsilon_fg, ///< Relative permittivity of the sphere.
complex double epsilon_bg ///< Relative permittivity of the background medium.
) {
qpms_tmatrix_t *t = qpms_tmatrix_init(bspec);
qpms_tmatrix_spherical_mu0_fill(t, a, omega, epsilon_fg, epsilon_bg);
return t;
};
/// Return value type for qpms_arc_function_t.
typedef struct qpms_arc_function_retval_t {
double r; ///< Distance from the origin.
double beta; ///< Angle between surface normal and radial direction.
} qpms_arc_function_retval_t;
/// Prototype for general parametrisation of \f$ C_\infty \f$-symmetric particle's surface.
typedef struct qpms_arc_function_t {
/// Arc parametrisation function.
/** TODO link to notes.
*
* Implemented by:
* qpms_arc_cylinder(),
* qpms_arc_sphere().
*/
qpms_arc_function_retval_t (*function) (
double theta, ///< Polar angle from interval \f$ [0, \pi] \f$.
const void *params ///< Pointer to implementation specific parameters.
);
const void *params;
} qpms_arc_function_t;
/// Parameter structure for qpms_arc_cylinder().
typedef struct qpms_arc_cylinder_params_t {
double R; ///< Cylinder radius.
double h; ///< Cylinder height.
} qpms_arc_cylinder_params_t;
/// Arc parametrisation of cylindrical particle; for qpms_arc_function_t.
qpms_arc_function_retval_t qpms_arc_cylinder(double theta,
const void *params ///< Points to qpms_arc_cylinder_params_t
);
/// Arc parametrisation of spherical particle; for qpms_arc_function_t.
/** Useful mostly only for benchmarks or debugging, as one can use the Mie-Lorentz solution. */
qpms_arc_function_retval_t qpms_arc_sphere(double theta,
const void *R ///< Points to double containing particle's radius.
);
/// Replaces T-matrix contents with those of a particle with \f$ C_\infty \f$ symmetry.
/**
* N.B. currently, this might crash for higher values of lMax (lMax > 5).
* Also, it seems that I am doing something wrong, as the result is accurate for sphere
* with lMax = 1 and for higher l the accuracy decreases.
*/
qpms_errno_t qpms_tmatrix_axialsym_fill(
qpms_tmatrix_t *t, ///< T-matrix whose contents are to be replaced. Not NULL.
complex double omega, ///< Angular frequency.
qpms_epsmu_t outside, ///< Optical properties of the outside medium.
qpms_epsmu_t inside, ///< Optical properties of the particle's material.
qpms_arc_function_t shape, ///< Particle surface parametrisation.
/** If `lMax_extend > t->bspec->lMax`, then the internal \a Q, \a R matrices will be
* trimmed at this larger lMax; the final T-matrix will then be trimmed
* according to bspec.
*/
qpms_l_t lMax_extend
);
/// Creates a new T-matrix of a particle with \f$ C_\infty \f$ symmetry.
static inline qpms_tmatrix_t *qpms_tmatrix_axialsym(
const qpms_vswf_set_spec_t *bspec,
complex double omega, ///< Angular frequency.
qpms_epsmu_t outside, ///< Optical properties of the outside medium.
qpms_epsmu_t inside, ///< Optical properties of the particle's material.
qpms_arc_function_t shape, ///< Particle surface parametrisation.
/// Internal lMax to improve precision of the result.
/** If `lMax_extend > bspec->lMax`, then the internal \a Q, \a R matrices will be
* trimmed at this larger lMax; the final T-matrix will then be trimmed
* according to bspec.
*/
qpms_l_t lMax_extend
) {
qpms_tmatrix_t *t = qpms_tmatrix_init(bspec);
qpms_tmatrix_axialsym_fill(t, omega, outside, inside, shape, lMax_extend);
return t;
}
/// Parameter structure for qpms_tmatrix_generator_axialsym.
typedef struct qpms_tmatrix_generator_axialsym_param_t {
qpms_epsmu_generator_t outside;
qpms_epsmu_generator_t inside;
qpms_arc_function_t shape;
qpms_l_t lMax_extend;
} qpms_tmatrix_generator_axialsym_param_t;
/// qpms_tmatrix_axialsym for qpms_tmatrix_generator_t
qpms_errno_t qpms_tmatrix_generator_axialsym(qpms_tmatrix_t *t, ///< T-matrix to fill.
complex double omega, ///< Angular frequency.
const void *params ///< Parameters of type qpms_tmatrix_generator_axialsym_param_t.
);
/// Computes the (reduced) transposed R or Q matrix for axially symmetric particle (useful for debugging).
qpms_errno_t qpms_tmatrix_generator_axialsym_RQ_transposed_fill(complex double *target,
complex double omega,
const qpms_tmatrix_generator_axialsym_param_t *param,
qpms_normalisation_t norm,
qpms_bessel_t J
);
/// Computes the (reduced) transposed R or Q matrix for axially symmetric particle (useful mostly for debugging).
qpms_errno_t qpms_tmatrix_axialsym_RQ_transposed_fill(complex double *target,
complex double omega, qpms_epsmu_t outside, qpms_epsmu_t inside,
qpms_arc_function_t shape, qpms_l_t lMaxQR, qpms_normalisation_t norm,
qpms_bessel_t J ///< Use QPMS_BESSEL_REGULAR to calculate \f$ R^T\f$ or QPMS_HANKEL_PLUS to calculate \f$ Q^T\f$.
);
/// An "abstract" T-matrix, contains a T-matrix generator instead of actual data.
typedef struct qpms_tmatrix_function_t {
/** \brief VSWF basis specification, NOT owned by qpms_tmatrix_t by default.
*
* Usually not checked for meaningfulness by the functions (methods),
* so the caller should take care that \a spec->ilist does not
* contain any duplicities and that for each wave with order \a m
* there is also one with order \a m.
*/
const qpms_vswf_set_spec_t *spec;
const qpms_tmatrix_generator_t *gen; ///< A T-matrix generator function.
} qpms_tmatrix_function_t;
/// Convenience function to create a new T-matrix from qpms_tmatrix_function_t.
// FIXME the name is not very intuitive.
static inline qpms_tmatrix_t *qpms_tmatrix_init_from_function(qpms_tmatrix_function_t f, complex double omega) {
return qpms_tmatrix_init_from_generator(f.spec, *f.gen, omega);
}
/// Specifies different kinds of operations done on T-matrices
typedef enum {
QPMS_TMATRIX_OPERATION_NOOP, ///< Identity operation.
QPMS_TMATRIX_OPERATION_LRMATRIX, ///< General matrix transformation \f$ T' = MTM^\dagger \f$; see @ref qpms_tmatrix_operation_lrmatrix.
QPMS_TMATRIX_OPERATION_IROT3, ///< Single rotoreflection specified by a qpms_irot3_t.
QPMS_TMATRIX_OPERATION_IROT3ARR, ///< Symmetrise using an array of rotoreflection; see @ref qpms_tmatrix_operation_irot3arr.
QPMS_TMATRIX_OPERATION_COMPOSE_SUM, ///< Apply several transformations and sum the results, see @ref qpms_tmatrix_operation_compose_sum.
QPMS_TMATRIX_OPERATION_COMPOSE_CHAIN, ///< Chain several different transformations; see @ref qpms_tmatrix_operation_compose_chain.
QPMS_TMATRIX_OPERATION_SCMULZ, ///< Elementwise scalar multiplication with a complex matrix; see @ref qpms_tmatrix_operation_scmulz.
//QPMS_TMATRIX_OPERATION_POINTGROUP, ///< TODO the new point group in pointgroup.h
QPMS_TMATRIX_OPERATION_FINITE_GROUP_SYMMETRISE ///< Legacy qpms_finite_group_t with filled rep3d; see @ref qpms_tmatrix_operation_finite_group.
} qpms_tmatrix_operation_kind_t;
/// General matrix transformation \f[ T' = MTM^\dagger \f] spec for qpms_tmatrix_operation_t.
struct qpms_tmatrix_operation_lrmatrix {
/// Raw matrix data of \a M in row-major order.
/** The matrix must be taylored for the given bspec! */
complex double *m;
size_t m_size; ///< Total size of \a m matrix in terms of sizeof(complex double).
bool owns_m; ///< Whether \a m is owned by this;
};
struct qpms_tmatrix_operation_t; // Forward declaration for the composed operations.
/// Specifies a composed operation of type \f$ T' = c\sum_i f_i'(T) \f$ for qpms_tmatrix_operation_t.
struct qpms_tmatrix_operation_compose_sum {
size_t n; ///< Number of operations in ops;
const struct qpms_tmatrix_operation_t **ops; ///< Operations array. (Pointers array \a ops[] always owned by this.)
double factor; ///< Overall factor \a c.
/// (Optional) operations buffer into which elements of \a ops point.
/** Owned by this or NULL. If not NULL, all \a ops members are assumed to point into
* the memory held by \a opmem and to be properly initialised.
* Each \a ops member has to point to _different_ elements of \a opmem.
*/
struct qpms_tmatrix_operation_t *opmem;
};
/// Specifies a composed operation of type \f$ T' = f_{n-1}(f_{n-2}(\dots f_0(T)\dots))) \f$ for qpms_tmatrix_operation_t.
struct qpms_tmatrix_operation_compose_chain {
size_t n; ///< Number of operations in ops;
const struct qpms_tmatrix_operation_t **ops; ///< Operations array. (Pointers owned by this.)
struct qpms_tmatrix_operation_t *opmem; ///< (Optional) operations buffer into which elements of \a ops point. (Owned by this or NULL.)
size_t opmem_size; ///< Length of the opmem array.
_Bool *ops_owned; ///< True for all sub operations owned by this and saved in opmem. NULL if opmem is NULL.
};
/// Specifies an elementwise complex multiplication of type \f$ T'_{ij} = M_{ij}T_{ij} \f$ for qpms_tmatrix_operation_t.
struct qpms_tmatrix_operation_scmulz {
/// Raw matrix data of \a M in row-major order.
/** The matrix must be taylored for the given bspec! */
complex double *m;
size_t m_size; ///< Total size of \a m matrix in terms of sizeof(complex double).
bool owns_m; ///< Whether \a m is owned by this.
};
/// Specifies a symmetrisation using a set of rotoreflections (with equal weights) for qpms_tmatrix_operation_t.
/** Internally, this is evaluated using a call to qpms_symmetrise_tmdata_irot3arr()
* or qpms_symmetrise_tmdata_irot3arr_inplace(). */
struct qpms_tmatrix_operation_irot3arr {
size_t n; ///< Number of rotoreflections;
qpms_irot3_t *ops; ///< Rotoreflection array of size \a n.
bool owns_ops; ///< Whether \a ops array is owned by this.
};
/// A generic T-matrix transformation operator.
typedef struct qpms_tmatrix_operation_t {
/// Specifies the operation kind to be performed and which type \op actually contains.
qpms_tmatrix_operation_kind_t typ;
union {
struct qpms_tmatrix_operation_lrmatrix lrmatrix;
struct qpms_tmatrix_operation_scmulz scmulz;
qpms_irot3_t irot3; ///< Single rotoreflection; \a typ = QPMS_TMATRIX_OPERATION_IROT3
struct qpms_tmatrix_operation_irot3arr irot3arr;
struct qpms_tmatrix_operation_compose_sum compose_sum;
struct qpms_tmatrix_operation_compose_chain compose_chain;
/// Finite group for QPMS_TMATRIX_OPERATION_FINITE_GROUP_SYMMETRISE.
/** Not owned by this; \a rep3d must be filled. */
const qpms_finite_group_t *finite_group;
} op; ///< Operation data; actual type is determined by \a typ.
} qpms_tmatrix_operation_t;
static const qpms_tmatrix_operation_t qpms_tmatrix_operation_noop = {.typ = QPMS_TMATRIX_OPERATION_NOOP};
/// Apply an operation on a T-matrix, returning a newly allocated result.
qpms_tmatrix_t *qpms_tmatrix_apply_operation(const qpms_tmatrix_operation_t *op, const qpms_tmatrix_t *orig);
/// Apply an operation on a T-matrix and replace it with the result.
qpms_tmatrix_t *qpms_tmatrix_apply_operation_inplace(const qpms_tmatrix_operation_t *op, qpms_tmatrix_t *orig);
/// Apply an operation on a T-matrix and replace another one it with the result.
qpms_tmatrix_t *qpms_tmatrix_apply_operation_replace(qpms_tmatrix_t *dest,
const qpms_tmatrix_operation_t *op, const qpms_tmatrix_t *orig);
/// (Recursively) deallocates internal data of qpms_tmatrix_operation_t.
/** It does NOT clear the memory pointed to by op it self, but only
* heap-allocated data of certain operations, if labeled as owned by it.
* In case of compose operations, the recursion stops if the children are
* not owned by them (the opmem pointer is NULL).
*/
void qpms_tmatrix_operation_clear(qpms_tmatrix_operation_t *f);
/// (Recursively) copies an qpms_tmatrix_operation_t.
/** Makes copies of all the internal data and takes ownership over them if needed */
void qpms_tmatrix_operation_copy(qpms_tmatrix_operation_t *target, const qpms_tmatrix_operation_t *src);
/// Inits a new "chain" of composed operations, some of which might be owned.
void qpms_tmatrix_operation_compose_chain_init(
qpms_tmatrix_operation_t *target, ///< The operation structure that will be set to the chain.
size_t nops, ///< Number of chained operations (length of the \a ops array)
size_t opmem_size ///< Size of the own operations buffer (length of the \a opmem array)
);
#if 0
// Abstract types that describe T-matrix/particle/scatsystem symmetries
// To be implemented later. See also the thoughts in the beginning of groups.h.
typedef *char qpms_tmatrix_id_t; ///< Maybe I want some usual integer type instead.
///Abstract T-matrix type draft.
/**
* TODO.
*/
typedef struct qpms_abstract_tmatrix_t{
qpms_tmatrix_id_t id;
/// Generators of the discrete point group under which T-matrix is invariant.
qpms_irot3_t *invar_gens;
/// Length of invar_gens.
qpms_gmi_t invar_gens_size;
} qpms_abstract_tmatrix_t;
typedef struct qpms_abstract_particle_t{
} qpms_abstract_particle_t;
/// An abstract particle, defined by its position and abstract T-matrix.
typedef struct qpms_abstract_particle_t {
cart3_t pos; ///< Particle position in cartesian coordinates.
const qpms_abstract_tmatrix_t *tmatrix; ///< T-matrix; not owned by this.
} qpms_abstract_particle_t;
/** This is just an alias, as the same index can be used for
* abstract T-matrices as well.
*/
typedef qpms_particle_tid_t qpms_abstract_particle_tid_t;
#endif // 0
#endif //TMATRICES_H