qpms/qpms/hexpoints.py

588 lines
28 KiB
Python

import math
import numpy as np
nx = None
_s3 = math.sqrt(3)
def generate_trianglepoints(maxlayer, include_origin = False, v3d = True, circular = True, sixthindices = False, mirrorindices = False):
_e6 = np.array([[math.cos(2*math.pi*i/6),math.sin(2*math.pi*i/6),0] if v3d else [math.cos(2*math.pi*i/6),math.sin(2*math.pi*i/6)] for i in range(6)])
points = np.empty((3*maxlayer*(maxlayer+1)+(1 if include_origin else 0), 3 if v3d else 2))
point_i = 0
if (include_origin):
points[0] = np.array((0,0,0) if v3d else (0,0))
point_i = 1
if sixthindices:
si = np.empty((6,(maxlayer*(maxlayer+1))//2), dtype=int)
sii = [0,0,0,0,0,0]
if mirrorindices:
if(maxlayer < 3):
mi = np.empty((2,0,), dtype=int)
else:
#layer indices start from one!
ilayer = np.arange(1, maxlayer+1) # We need first to "copy" layer indices to correspond to the Muster count
mustercount = (ilayer - 1)//2
mustercum = np.cumsum(mustercount)
layerstart = np.zeros((mustercum[maxlayer - 1]), dtype=int)
layerstart[mustercum[:(maxlayer-1)]] = 1
layer = np.cumsum(layerstart) + 2 # That's it
lb = 3*layer*(layer-1) # layer base (lowest) index
li = np.arange(len(layer)) - mustercum[layer-2] # muster indices for each layers
mi = np.empty((2, len(layer)), dtype=int)
mi[0] = lb + 1 + li + include_origin
mi[1] = lb + layer - (1 + li) + include_origin
# there are two non-musters in each even layer, one non-muster in each odd
layer = (2*np.arange(((3*maxlayer)//2))+1)//3 + 1
nmi = 3*layer*(layer-1)
nmi[2::3] += layer[2::3] // 2 # second non-musters in even layers
nmi += include_origin
for layer in range(1,maxlayer+1):
for i in range(6):
base = _e6[i]*layer
shift = _e6[(i+2)%6]
ar = np.arange(layer)
points[point_i:(point_i+layer)] = base[nx,:] + ar[:,nx] * shift[nx,:]
if sixthindices:
si[i, sii[i]:sii[i]+layer] = point_i + ar
sii[i] += layer
point_i += layer
if (circular):
mask = (np.sum(points * points, axis = -1) <= maxlayer * maxlayer * 3/ 4 + 0.1) # UGLY FIX OF ASYMMETRY BECAUSE OF ROUNDING ERROR
points = points[mask]
if sixthindices:
cum = np.cumsum(mask) - 1
mask0 = mask[si[0]]
si_ = si[:,mask0]
si = cum[si_]
if mirrorindices:
cum = np.cumsum(mask) - 1
mask0 = mask[mi[0]]
mi_ = mi[:,mask0]
mi = cum[mi_]
mask0 = mask[nmi]
nmi_ = nmi[mask0]
nmi = cum[nmi_]
if not (mirrorindices or sixthindices):
return points
else:
return {'points': points,
'si' : si if sixthindices else None,
'mi' : mi if mirrorindices else None,
'nmi' : nmi if mirrorindices else None}
def generate_trianglepoints_hexcomplement(maxlayer, v3d = True, circular = True, thirdindices = False, mirrorindices=False):
_e6 = np.array([[math.cos(2*math.pi*i/6),math.sin(2*math.pi*i/6),0] if v3d else [math.cos(2*math.pi*i/6),math.sin(2*math.pi*i/6)] for i in range(6)])
_f6 = np.array([[-math.sin(2*math.pi*i/6),math.cos(2*math.pi*i/6),0] if v3d else [math.sin(2*math.pi*i/6),-math.cos(2*math.pi*i/6)] for i in range(6)])
points = np.empty((3*maxlayer*maxlayer, 3 if v3d else 2))
point_i = 0
# 3 * layer ** 2 is the basis index for a layer, a layer contains 3 * (2*layer + 1) points
if thirdindices:
ii = np.arange(maxlayer**2)
layer = np.empty((maxlayer**2), dtype=int)
layer = np.sqrt(ii, out=layer, casting='unsafe')
#ti0 = 2*layer**2 + ii
ti = np.arange(3)[:, nx] * (2*layer + 1)[nx, :] + (2*layer**2 + ii)[nx,:]
if mirrorindices:
ii = np.arange(((maxlayer-1)*maxlayer)//2)
layer = np.empty((((maxlayer-1)*maxlayer)//2), dtype=int)
layer = (np.sqrt(1+8*ii, out=layer, casting='unsafe')+1)//2
li = ii - ((layer ) * (layer-1))//2# numbers indices in a each layer
lb = 3*layer **2 # base index of a layer
mi = np.empty((2,len(layer)), dtype=int)
mi[0] = lb + li + layer % 2
mi[1] = lb + 2*layer - li
# indices of non-mirrored/self-mirrored
layer = np.arange(maxlayer)
lb = 3 * layer**2
nmi = lb + ((layer + 1) % 2) * layer
for layer in range(0,maxlayer):
if (layer % 2): # odd layer
for i in range(3):
base = _f6[(2*i-1)%6] * ((0.5 + 1.5 * layer) / _s3)
shift = _e6[(2*i+2)%6]
count = (layer + 1) // 2
ar = np.arange(count)
points[point_i:point_i+count,:] = base + ar[:,nx]*shift[nx,:]
point_i += count
base = _e6[(2*i+1)%6]*layer + _f6[(2*i)%6] / _s3
shift = _e6[(2*i+3)%6]
count = layer
ar = np.arange(count)
points[point_i:point_i+count,:] = base + ar[:,nx]*shift[nx,:]
point_i += count
base = _e6[(2*i+2)%6]*layer + _f6[(2*i)%6] / _s3
shift = _e6[(2*i+4)%6]
count = (layer + 1) // 2
ar = np.arange(count)
points[point_i:point_i+count,:] = base + ar[:,nx]*shift[nx,:]
point_i += count
else: # even layer:
for i in range(3):
shift = _e6[(2*i+2)%6]
base = _f6[(2*i-1)%6] * ((0.5 + 1.5 * layer) / _s3) + shift / 2
count = layer // 2
ar = np.arange(count)
points[point_i:point_i+count,:] = base + ar[:,nx]*shift[nx,:]
point_i += count
base = _e6[(2*i+1)%6]*layer + _f6[(2*i)%6] / _s3
shift = _e6[(2*i+3)%6]
count = layer
ar = np.arange(count)
points[point_i:point_i+count,:] = base + ar[:,nx]*shift[nx,:]
point_i += count
base = _e6[(2*i+2)%6]*layer + _f6[(2*i)%6] / _s3
shift = _e6[(2*i+4)%6]
count = (layer + 2) // 2
ar = np.arange(count)
points[point_i:point_i+count,:] = base + ar[:,nx]*shift[nx,:]
point_i += count
#if (mirrorindices):
if (circular):
mask = (np.sum(points * points, axis = -1) <= maxlayer * maxlayer * 3/ 4 + 0.01) # UGLY FIX OF ASYMMETRY BECAUSE OF ROUNDING ERROR
points = points[mask]
if thirdindices:
cum = np.cumsum(mask) - 1
mask0 = mask[ti[0]]
ti_ = ti[:,mask0]
ti = cum[ti_]
if mirrorindices:
cum = np.cumsum(mask) - 1
mask0 = mask[mi[0]]
mi_ = mi[:,mask0]
mi = cum[mi_]
mask0 = mask[nmi]
nmi_ = nmi[mask0]
nmi = cum[nmi_]
if not (mirrorindices or thirdindices):
return points
else:
return {'points': points,
'ti' : ti if thirdindices else None,
'mi' : mi if mirrorindices else None,
'nmi' : nmi if mirrorindices else None
}
from qpms_c import get_mn_y, trans_calculator
from .qpms_p import cart2sph
def hexlattice_precalc_AB_save(file, lMax, k_hexside, maxlayer, circular=True, savepointinfo = False, J_scat=3):
params = {
'lMax' : lMax,
'k_hexside' : k_hexside,
'maxlayer' : maxlayer,
'circular' : circular,
'savepointinfo' : savepointinfo,
'J_scat' : J_scat
}
tpdict = generate_trianglepoints(maxlayer, v3d=True, circular=circular, sixthindices=True, mirrorindices=True)
tphcdict = generate_trianglepoints_hexcomplement(maxlayer, v3d=True, circular=circular, thirdindices=True, mirrorindices=True)
my, ny = get_mn_y(lMax)
nelem = len(my)
a_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex)
b_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex)
a_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex)
b_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex)
a_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex)
b_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex)
a_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex)
b_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex)
k_0 = k_hexside*_s3 # not really a wave vector here because of the normalisation!
tc = trans_calculator(lMax)
y = np.arange(nelem)
points = tpdict['points'][tpdict['nmi']]
d_i2j = cart2sph(points)
a_self_nm, b_self_nm = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat)
points = tpdict['points'][tpdict['mi'][0]]
d_i2j = cart2sph(points)
a_self_m0, b_self_m0 = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat)
points = tphcdict['points'][tphcdict['nmi']]
d_i2j = cart2sph(points)
a_d2u_nm, b_d2u_nm = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat)
points = tphcdict['points'][tphcdict['mi'][0]]
d_i2j = cart2sph(points)
a_d2u_m0, b_d2u_m0 = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat)
tosave = {
'a_self_nm' : a_self_nm,
'a_self_m0' : a_self_m0,
'b_self_nm' : b_self_nm,
'b_self_m0' : b_self_m0,
'a_d2u_nm' : a_d2u_nm,
'a_d2u_m0' : a_d2u_m0,
'b_d2u_nm' : b_d2u_nm,
'b_d2u_m0' : b_d2u_m0,
'precalc_params' : params
}
if savepointinfo:
tosave['tp_points'] = tpdict['points'],
tosave['tp_si'] = tpdict['si'],
tosave['tp_mi'] = tpdict['mi'],
tosave['tp_nmi'] = tpdict['nmi']
tosave['tphc_points'] = tphcdict['points'],
tosave['tphc_ti'] = tphcdict['ti'],
tosave['tphc_mi'] = tphcdict['mi'],
tosave['tphc_nmi'] = tphcdict['nmi']
np.savez(file, **tosave)
def hexlattice_precalc_AB_loadunwrap(file, tpdict = None, tphcdict = None, return_points = False):
npz = np.load(file)
precalc_params = npz['precalc_params'][()]
my, ny = get_mn_y(precalc_params['lMax'])
nelem = len(my)
# this I should have made more universal...
if precalc_params['savepointinfo']:
if not tpdict:
tpdict = {
'points' : npz['tp_points'],
'si' : npz['tp_si'],
'mi' : npz['tp_mi'],
'nmi' : npz['tp_nmi'],
}
if not tphcdict:
tphcdict = {
'points' : npz['tphc_points'],
'ti' : npz['tphc_ti'],
'mi' : npz['tphc_mi'],
'nmi' : npz['tphc_nmi']
}
else:
if not tpdict:
tpdict = generate_trianglepoints(maxlayer = precalc_params['maxlayer'], v3d=True,
circular=precalc_params['circular'], sixthindices=True, mirrorindices=True)
if not tphcdict:
tphcdict = generate_trianglepoints_hexcomplement(maxlayer=precalc_params['maxlayer'], v3d=True,
circular=precalc_params['circular'], thirdindices=True, mirrorindices=True)
# For some obscure reason, I keep getting trailing single-dimension in the beginning for these arrays
for a in (tpdict['points'], tphcdict['points'], tpdict['si'], tpdict['mi'],
tphcdict['ti'], tphcdict['mi']):
if len(a.shape) > 2:
a.shape = a.shape[1::]
self_tr = tpdict['points']
d2u_tr = tphcdict['points']
if len(self_tr.shape)>2:
self_tr = np.reshape(self_tr, self_tr.shape[1::])
if len(d2u_tr.shape)>2:
d2u_tr = np.reshape(d2u_tr, d2u_tr.shape[1::])
u2d_tr = -d2u_tr
a_self = np.empty((self_tr.shape[0],nelem,nelem), dtype=complex)
b_self = np.empty((self_tr.shape[0],nelem,nelem), dtype=complex)
a_d2u = np.empty(( d2u_tr.shape[0],nelem,nelem), dtype=complex)
b_d2u = np.empty(( d2u_tr.shape[0],nelem,nelem), dtype=complex)
a_self[tpdict['nmi']]=npz['a_self_nm']
a_self[tpdict['mi'][0]]=npz['a_self_m0']
b_self[tpdict['nmi']]=npz['b_self_nm']
b_self[tpdict['mi'][0]]=npz['b_self_m0']
mirrorangles = cart2sph(self_tr[tpdict['mi'][1]])[:,2] - cart2sph(self_tr[tpdict['mi'][0]])[:,2]
a_self[tpdict['mi'][1],:,:] = a_self[tpdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
b_self[tpdict['mi'][1],:,:] = b_self[tpdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
for i in range(1,6):
a_self[tpdict['si'][i],:,:] = a_self[tpdict['si'][0],:,:] * np.exp(1j*math.pi/3*i*(my[nx,:]-my[:,nx]))
b_self[tpdict['si'][i],:,:] = b_self[tpdict['si'][0],:,:] * np.exp(1j*math.pi/3*i*(my[nx,:]-my[:,nx]))
a_d2u[tphcdict['nmi']]=npz['a_d2u_nm']
a_d2u[tphcdict['mi'][0]]=npz['a_d2u_m0']
b_d2u[tphcdict['nmi']]=npz['b_d2u_nm']
b_d2u[tphcdict['mi'][0]]=npz['b_d2u_m0']
mirrorangles = cart2sph(self_tr[tphcdict['mi'][1]])[:,2] - cart2sph(self_tr[tphcdict['mi'][0]])[:,2]
a_d2u[tphcdict['mi'][1],:,:] = a_d2u[tphcdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
b_d2u[tphcdict['mi'][1],:,:] = b_d2u[tphcdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
for i in (1,-1):
a_d2u[tphcdict['ti'][i],:,:] = a_d2u[tphcdict['ti'][0],:,:] * np.exp(i*2j*math.pi/3*(my[nx,:]-my[:,nx]))
b_d2u[tphcdict['ti'][i],:,:] = b_d2u[tphcdict['ti'][0],:,:] * np.exp(i*2j*math.pi/3*(my[nx,:]-my[:,nx]))
a_u2d = a_d2u * (-1)**(my[nx,:]-my[:,nx])
b_u2d = b_d2u * (-1)**(my[nx,:]-my[:,nx])
d = {
'a_self' : a_self,
'b_self' : b_self,
'a_d2u' : a_d2u,
'b_d2u' : b_d2u,
'a_u2d' : a_u2d,
'b_u2d' : b_u2d,
}
for k in precalc_params.keys():
d[k] = precalc_params[k]
if return_points:
d['d2u_tr'] = tphcdict['points']
d['u2d_tr'] = -tphcdict['points']
d['self_tr'] = tpdict['points']
return d
def hexlattice_get_AB(lMax, k_hexside, maxlayer, circular=True, return_points = True, J_scat=3):
params = {
'lMax' : lMax,
'k_hexside' : k_hexside,
'maxlayer' : maxlayer,
'circular' : circular,
'savepointinfo' : return_points, # should I delete this key?
'J_scat' : J_scat
}
tpdict = generate_trianglepoints(maxlayer, v3d=True, circular=circular, sixthindices=True, mirrorindices=True)
tphcdict = generate_trianglepoints_hexcomplement(maxlayer, v3d=True, circular=circular, thirdindices=True, mirrorindices=True)
my, ny = get_mn_y(lMax)
nelem = len(my)
a_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex)
b_self_nm = np.empty((tpdict['nmi'].shape[0],nelem,nelem), dtype=complex)
a_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex)
b_self_m0 = np.empty((tpdict['mi'].shape[1],nelem,nelem), dtype=complex)
a_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex)
b_d2u_nm = np.empty((tphcdict['nmi'].shape[0],nelem,nelem), dtype=complex)
a_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex)
b_d2u_m0 = np.empty((tphcdict['mi'].shape[1],nelem,nelem), dtype=complex)
k_0 = k_hexside*_s3 # not really a wave vector here because of the normalisation!
tc = trans_calculator(lMax)
y = np.arange(nelem)
points = tpdict['points'][tpdict['nmi']]
d_i2j = cart2sph(points)
a_self_nm, b_self_nm = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat)
points = tpdict['points'][tpdict['mi'][0]]
d_i2j = cart2sph(points)
a_self_m0, b_self_m0 = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat)
points = tphcdict['points'][tphcdict['nmi']]
d_i2j = cart2sph(points)
a_d2u_nm, b_d2u_nm = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat)
points = tphcdict['points'][tphcdict['mi'][0]]
d_i2j = cart2sph(points)
a_d2u_m0, b_d2u_m0 = tc.get_AB_arrays(k_0*d_i2j[:,0],d_i2j[:,1],d_i2j[:,2],np.array([False]),J_scat)
'''
tosave = {
'a_self_nm' : a_self_nm,
'a_self_m0' : a_self_m0,
'b_self_nm' : b_self_nm,
'b_self_m0' : b_self_m0,
'a_d2u_nm' : a_d2u_nm,
'a_d2u_m0' : a_d2u_m0,
'b_d2u_nm' : b_d2u_nm,
'b_d2u_m0' : b_d2u_m0,
'precalc_params' : params
}
if savepointinfo:
tosave['tp_points'] = tpdict['points'],
tosave['tp_si'] = tpdict['si'],
tosave['tp_mi'] = tpdict['mi'],
tosave['tp_nmi'] = tpdict['nmi']
tosave['tphc_points'] = tphcdict['points'],
tosave['tphc_ti'] = tphcdict['ti'],
tosave['tphc_mi'] = tphcdict['mi'],
tosave['tphc_nmi'] = tphcdict['nmi']
np.savez(file, **tosave)
'''
self_tr = tpdict['points']
d2u_tr = tphcdict['points']
if len(self_tr.shape)>2:
self_tr = np.reshape(self_tr, self_tr.shape[1::])
if len(d2u_tr.shape)>2:
d2u_tr = np.reshape(d2u_tr, d2u_tr.shape[1::])
u2d_tr = -d2u_tr
a_self = np.empty((self_tr.shape[0],nelem,nelem), dtype=complex)
b_self = np.empty((self_tr.shape[0],nelem,nelem), dtype=complex)
a_d2u = np.empty(( d2u_tr.shape[0],nelem,nelem), dtype=complex)
b_d2u = np.empty(( d2u_tr.shape[0],nelem,nelem), dtype=complex)
a_self[tpdict['nmi']]=a_self_nm
a_self[tpdict['mi'][0]]=a_self_m0
b_self[tpdict['nmi']]=b_self_nm
b_self[tpdict['mi'][0]]=b_self_m0
mirrorangles = cart2sph(self_tr[tpdict['mi'][1]])[:,2] - cart2sph(self_tr[tpdict['mi'][0]])[:,2]
a_self[tpdict['mi'][1],:,:] = a_self[tpdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
b_self[tpdict['mi'][1],:,:] = b_self[tpdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
for i in range(1,6):
a_self[tpdict['si'][i],:,:] = a_self[tpdict['si'][0],:,:] * np.exp(1j*math.pi/3*i*(my[nx,:]-my[:,nx]))
b_self[tpdict['si'][i],:,:] = b_self[tpdict['si'][0],:,:] * np.exp(1j*math.pi/3*i*(my[nx,:]-my[:,nx]))
a_d2u[tphcdict['nmi']]=a_d2u_nm
a_d2u[tphcdict['mi'][0]]=a_d2u_m0
b_d2u[tphcdict['nmi']]=b_d2u_nm
b_d2u[tphcdict['mi'][0]]=b_d2u_m0
mirrorangles = cart2sph(self_tr[tphcdict['mi'][1]])[:,2] - cart2sph(self_tr[tphcdict['mi'][0]])[:,2]
a_d2u[tphcdict['mi'][1],:,:] = a_d2u[tphcdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
b_d2u[tphcdict['mi'][1],:,:] = b_d2u[tphcdict['mi'][0],:,:] * np.exp(1j*mirrorangles[:,nx,nx]*(my[nx,nx,:]-my[nx,:,nx]))
for i in (1,-1):
a_d2u[tphcdict['ti'][i],:,:] = a_d2u[tphcdict['ti'][0],:,:] * np.exp(i*2j*math.pi/3*(my[nx,:]-my[:,nx]))
b_d2u[tphcdict['ti'][i],:,:] = b_d2u[tphcdict['ti'][0],:,:] * np.exp(i*2j*math.pi/3*(my[nx,:]-my[:,nx]))
a_u2d = a_d2u * (-1)**(my[nx,:]-my[:,nx])
b_u2d = b_d2u * (-1)**(my[nx,:]-my[:,nx])
d = {
'a_self' : a_self,
'b_self' : b_self,
'a_d2u' : a_d2u,
'b_d2u' : b_d2u,
'a_u2d' : a_u2d,
'b_u2d' : b_u2d,
}
for k in params.keys():
d[k] = params[k]
if return_points:
d['d2u_tr'] = tphcdict['points']
d['u2d_tr'] = -tphcdict['points']
d['self_tr'] = tpdict['points']
return d
from scipy.constants import c
from .timetrack import _time_b, _time_e
from .tmatrices import symz_indexarrays
def hexlattice_zsym_getSVD(lMax, TMatrices_om, epsilon_b, hexside, maxlayer, omega, klist, gaussianSigma=False, onlyNmin=0, verbose=False):
btime = _time_b(verbose)
nelem = lMax * (lMax + 2)
n2id = np.identity(2*nelem)
n2id.shape = (2,nelem,2,nelem)
nan = float('nan')
k_0 = omega * math.sqrt(epsilon_b) / c
tdic = hexlattice_get_AB(lMax,k_0*hexside,maxlayer)
a_self = tdic['a_self'][:,:nelem,:nelem]
b_self = tdic['b_self'][:,:nelem,:nelem]
a_u2d = tdic['a_u2d'][:,:nelem,:nelem]
b_u2d = tdic['b_u2d'][:,:nelem,:nelem]
a_d2u = tdic['a_d2u'][:,:nelem,:nelem]
b_d2u = tdic['b_d2u'][:,:nelem,:nelem]
unitcell_translations = tdic['self_tr']*hexside*_s3
u2d_translations = tdic['u2d_tr']*hexside*_s3
d2u_translations = tdic['d2u_tr']*hexside*_s3
if gaussianSigma:
sbtime = _time_b(verbose, step='Calculating gaussian envelope')
unitcell_envelope = np.exp(-np.sum(tdic['self_tr']**2,axis=-1)/(2*gaussianSigma**2))
u2d_envelope = np.exp(-np.sum(tdic['u2d_tr']**2,axis=-1)/(2*gaussianSigma**2))
d2u_envelope = np.exp(-np.sum(tdic['d2u_tr']**2,axis=-1)/(2*gaussianSigma**2))
_time_e(sbtime, verbose, step='Calculating gaussian envelope')
#TMatrices_om = TMatrices_interp(omega)
if(not onlyNmin):
svUfullTElist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
svVfullTElist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
svSfullTElist = np.full((klist.shape[0], 2*nelem), np.nan, dtype=complex)
svUfullTMlist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
svVfullTMlist = np.full((klist.shape[0], 2*nelem, 2*nelem), np.nan, dtype=complex)
svSfullTMlist = np.full((klist.shape[0], 2*nelem), np.nan, dtype=complex)
else:
minsvTElist = np.full((klist.shape[0], onlyNmin),np.nan)
minsvTMlist = np.full((klist.shape[0], onlyNmin),np.nan)
leftmatrixlist = np.full((klist.shape[0],2,2,nelem,2,2,nelem),np.nan,dtype=complex)
#isNaNlist = np.zeros((klist.shape[0]), dtype=bool)
isNaNlist = (k_0*k_0 - klist[:,0]**2 - klist[:,1]**2 < 0)
nnlist = np.logical_not(isNaNlist)
sbtime = _time_b(verbose, step='Initialization of matrices for SVD for a given list of k\'s')
#ki = np.arange(klist.shape[0])[k_0*k_0 - klist[:,0]**2 - klist[:,1]**2 >= 0]
k = klist[nnlist]
phases_self = np.exp(1j*np.tensordot(k,unitcell_translations,axes=(-1,-1)))
phases_u2d = np.exp(1j*np.tensordot(k,u2d_translations,axes=(-1,-1)))
phases_d2u = np.exp(1j*np.tensordot(k,d2u_translations,axes=(-1,-1)))
if gaussianSigma:
phases_self *= unitcell_envelope
phases_u2d *= u2d_envelope
phases_d2u *= d2u_envelope
leftmatrix = np.zeros((k.shape[0],2,2,nelem, 2,2,nelem), dtype=complex)
# 0:[u,E<--u,E ]
# 1:[d,M<--d,M ]
leftmatrix[:,0,0,:,0,0,:] = np.tensordot(phases_self,a_self, axes=(-1,0)) # u2u, E2E
leftmatrix[:,1,0,:,1,0,:] = leftmatrix[:,0,0,:,0,0,:] # d2d, E2E
leftmatrix[:,0,1,:,0,1,:] = leftmatrix[:,0,0,:,0,0,:] # u2u, M2M
leftmatrix[:,1,1,:,1,1,:] = leftmatrix[:,0,0,:,0,0,:] # d2d, M2M
leftmatrix[:,0,0,:,0,1,:] = np.tensordot(phases_self,b_self, axes=(-1,0)) # u2u, M2E
leftmatrix[:,0,1,:,0,0,:] = leftmatrix[:,0,0,:,0,1,:] # u2u, E2M
leftmatrix[:,1,1,:,1,0,:] = leftmatrix[:,0,0,:,0,1,:] # d2d, E2M
leftmatrix[:,1,0,:,1,1,:] = leftmatrix[:,0,0,:,0,1,:] # d2d, M2E
leftmatrix[:,0,0,:,1,0,:] = np.tensordot(phases_d2u, a_d2u,axes=(-1,0)) #d2u,E2E
leftmatrix[:,0,1,:,1,1,:] = leftmatrix[:,0,0,:,1,0,:] #d2u, M2M
leftmatrix[:,1,0,:,0,0,:] = np.tensordot(phases_u2d, a_u2d,axes=(-1,0)) #u2d,E2E
leftmatrix[:,1,1,:,0,1,:] = leftmatrix[:,1,0,:,0,0,:] #u2d, M2M
leftmatrix[:,0,0,:,1,1,:] = np.tensordot(phases_d2u, b_d2u,axes=(-1,0)) #d2u,M2E
leftmatrix[:,0,1,:,1,0,:] = leftmatrix[:,0,0,:,1,1,:] #d2u, E2M
leftmatrix[:,1,0,:,0,1,:] = np.tensordot(phases_u2d, b_u2d,axes=(-1,0)) #u2d,M2E
leftmatrix[:,1,1,:,0,0,:] = leftmatrix[:,1,0,:,0,1,:] #u2d, E2M
#leftmatrix is now the translation matrix T
for j in range(2):
leftmatrix[:,j] = np.rollaxis(-np.tensordot(TMatrices_om[j], leftmatrix[:,j], axes=([-2,-1],[1,2])),2)
# at this point, jth row of leftmatrix is that of -MT
leftmatrix[:,j,:,:,j,:,:] += n2id
#now we are done, 1-MT
leftmatrixlist[nnlist] = leftmatrix
'''
# sem nějaká rozumná smyčka
for ki in range(klist.shape[0]):
k = klist[ki]
if (k_0*k_0 - k[0]*k[0] - k[1]*k[1] < 0):
isNaNlist[ki] = True
continue
phases_self = np.exp(1j*np.tensordot(k,unitcell_translations,axes=(0,-1)))
phases_u2d = np.exp(1j*np.tensordot(k,u2d_translations,axes=(0,-1)))
phases_d2u = np.exp(1j*np.tensordot(k,d2u_translations,axes=(0,-1)))
if gaussianSigma:
phases_self *= unitcell_envelope
phases_u2d *= u2d_envelope
phases_d2u *= d2u_envelope
leftmatrix = np.zeros((2,2,nelem, 2,2,nelem), dtype=complex)
# 0:[u,E<--u,E ]
# 1:[d,M<--d,M ]
leftmatrix[0,0,:,0,0,:] = np.tensordot(a_self,phases_self, axes=(0,-1)) # u2u, E2E
leftmatrix[1,0,:,1,0,:] = leftmatrix[0,0,:,0,0,:] # d2d, E2E
leftmatrix[0,1,:,0,1,:] = leftmatrix[0,0,:,0,0,:] # u2u, M2M
leftmatrix[1,1,:,1,1,:] = leftmatrix[0,0,:,0,0,:] # d2d, M2M
leftmatrix[0,0,:,0,1,:] = np.tensordot(b_self,phases_self, axes=(0,-1)) # u2u, M2E
leftmatrix[0,1,:,0,0,:] = leftmatrix[0,0,:,0,1,:] # u2u, E2M
leftmatrix[1,1,:,1,0,:] = leftmatrix[0,0,:,0,1,:] # d2d, E2M
leftmatrix[1,0,:,1,1,:] = leftmatrix[0,0,:,0,1,:] # d2d, M2E
leftmatrix[0,0,:,1,0,:] = np.tensordot(a_d2u, phases_d2u,axes=(0,-1)) #d2u,E2E
leftmatrix[0,1,:,1,1,:] = leftmatrix[0,0,:,1,0,:] #d2u, M2M
leftmatrix[1,0,:,0,0,:] = np.tensordot(a_u2d, phases_u2d,axes=(0,-1)) #u2d,E2E
leftmatrix[1,1,:,0,1,:] = leftmatrix[1,0,:,0,0,:] #u2d, M2M
leftmatrix[0,0,:,1,1,:] = np.tensordot(b_d2u, phases_d2u,axes=(0,-1)) #d2u,M2E
leftmatrix[0,1,:,1,0,:] = leftmatrix[0,0,:,1,1,:] #d2u, E2M
leftmatrix[1,0,:,0,1,:] = np.tensordot(b_u2d, phases_u2d,axes=(0,-1)) #u2d,M2E
leftmatrix[1,1,:,0,0,:] = leftmatrix[1,0,:,0,1,:] #u2d, E2M
#leftmatrix is now the translation matrix T
for j in range(2):
leftmatrix[j] = -np.tensordot(TMatrices_om[j], leftmatrix[j], axes=([-2,-1],[0,1]))
# at this point, jth row of leftmatrix is that of -MT
leftmatrix[j,:,:,j,:,:] += n2id
#now we are done, 1-MT
leftmatrixlist[ki] = leftmatrix
'''
leftmatrixlist_s = np.reshape(leftmatrixlist,(klist.shape[0], 2*2*nelem,2*2*nelem))[nnlist]
TEč, TMč = symz_indexarrays(lMax, 2)
leftmatrixlist_TE = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TEč,TEč)]
leftmatrixlist_TM = leftmatrixlist_s[np.ix_(np.arange(leftmatrixlist_s.shape[0]),TMč,TMč)]
_time_e(sbtime, verbose, step='Initializing matrices for SVD for a given list of k\'s')
sbtime = _time_b(verbose, step='Calculating SVDs for a given list of k\'s.')
if(not onlyNmin):
svUfullTElist[nnlist], svSfullTElist[nnlist], svVfullTElist[nnlist] = np.linalg.svd(leftmatrixlist_TE, compute_uv=True)
svUfullTMlist[nnlist], svSfullTMlist[nnlist], svVfullTMlist[nnlist] = np.linalg.svd(leftmatrixlist_TM, compute_uv=True)
_time_e(sbtime, verbose, step='Calculating SVDs for a given list of k\'s.')
_time_e(btime, verbose)
return ((svUfullTElist, svSfullTElist, svVfullTElist), (svUfullTMlist, svSfullTMlist, svVfullTMlist))
else:
minsvTElist[nnlist] = np.linalg.svd(leftmatrixlist_TE, compute_uv=False)[...,-onlyNmin:]
minsvTMlist[nnlist] = np.linalg.svd(leftmatrixlist_TM, compute_uv=False)[...,-onlyNmin:]
_time_e(sbtime, verbose, step='Calculating SVDs for a given list of k\'s.')
_time_e(btime, verbose)
return (minsvTElist, minsvTMlist)