327 lines
6.6 KiB
Plaintext
327 lines
6.6 KiB
Plaintext
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
|
\lyxformat 584
|
|
\begin_document
|
|
\begin_header
|
|
\save_transient_properties true
|
|
\origin unavailable
|
|
\textclass article
|
|
\use_default_options true
|
|
\maintain_unincluded_children false
|
|
\language english
|
|
\language_package default
|
|
\inputencoding utf8
|
|
\fontencoding auto
|
|
\font_roman "default" "TeX Gyre Pagella"
|
|
\font_sans "default" "default"
|
|
\font_typewriter "default" "default"
|
|
\font_math "auto" "auto"
|
|
\font_default_family default
|
|
\use_non_tex_fonts false
|
|
\font_sc false
|
|
\font_roman_osf true
|
|
\font_sans_osf false
|
|
\font_typewriter_osf false
|
|
\font_sf_scale 100 100
|
|
\font_tt_scale 100 100
|
|
\use_microtype false
|
|
\use_dash_ligatures true
|
|
\graphics default
|
|
\default_output_format default
|
|
\output_sync 0
|
|
\bibtex_command default
|
|
\index_command default
|
|
\float_placement class
|
|
\float_alignment class
|
|
\paperfontsize default
|
|
\spacing single
|
|
\use_hyperref true
|
|
\pdf_author "Marek Nečada"
|
|
\pdf_bookmarks true
|
|
\pdf_bookmarksnumbered false
|
|
\pdf_bookmarksopen false
|
|
\pdf_bookmarksopenlevel 1
|
|
\pdf_breaklinks false
|
|
\pdf_pdfborder false
|
|
\pdf_colorlinks false
|
|
\pdf_backref false
|
|
\pdf_pdfusetitle true
|
|
\papersize default
|
|
\use_geometry false
|
|
\use_package amsmath 1
|
|
\use_package amssymb 1
|
|
\use_package cancel 1
|
|
\use_package esint 1
|
|
\use_package mathdots 1
|
|
\use_package mathtools 1
|
|
\use_package mhchem 1
|
|
\use_package stackrel 1
|
|
\use_package stmaryrd 1
|
|
\use_package undertilde 1
|
|
\cite_engine basic
|
|
\cite_engine_type default
|
|
\biblio_style plain
|
|
\use_bibtopic false
|
|
\use_indices false
|
|
\paperorientation portrait
|
|
\suppress_date false
|
|
\justification true
|
|
\use_refstyle 1
|
|
\use_minted 0
|
|
\use_lineno 0
|
|
\index Index
|
|
\shortcut idx
|
|
\color #008000
|
|
\end_index
|
|
\secnumdepth 3
|
|
\tocdepth 3
|
|
\paragraph_separation indent
|
|
\paragraph_indentation default
|
|
\is_math_indent 0
|
|
\math_numbering_side default
|
|
\quotes_style english
|
|
\dynamic_quotes 0
|
|
\papercolumns 1
|
|
\papersides 1
|
|
\paperpagestyle default
|
|
\tablestyle default
|
|
\tracking_changes false
|
|
\output_changes false
|
|
\html_math_output 0
|
|
\html_css_as_file 0
|
|
\html_be_strict false
|
|
\end_header
|
|
|
|
\begin_body
|
|
|
|
\begin_layout Section
|
|
Applications
|
|
\begin_inset CommandInset label
|
|
LatexCommand label
|
|
name "sec:Applications"
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Finally, we present some results obtained with the QPMS suite as well as
|
|
benchmarks with BEM.
|
|
Scripts to reproduce these results are available under the
|
|
\family typewriter
|
|
examples
|
|
\family default
|
|
directory of the QPMS source repository.
|
|
The benchmarks require SCUFF-EM of version xxx
|
|
\begin_inset Marginal
|
|
status open
|
|
|
|
\begin_layout Plain Layout
|
|
Add the version when possible.
|
|
\end_layout
|
|
|
|
\end_inset
|
|
|
|
or newer.
|
|
\end_layout
|
|
|
|
\begin_layout Subsection
|
|
Response of a rectangular nanoplasmonic array
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Our first example deals with a plasmonic array made of golden nanoparticles
|
|
placed in a rectangular planar configuration.
|
|
The nanoparticles have shape of right circular cylinder with radius 50
|
|
nm and height 50 nm.
|
|
The particles are placed with periodicities
|
|
\begin_inset Formula $p_{x}=\SI{621}{nm}$
|
|
\end_inset
|
|
|
|
,
|
|
\begin_inset Formula $p_{y}=\SI{571}{nm}$
|
|
\end_inset
|
|
|
|
into an isotropic medium with a constant refraction index
|
|
\begin_inset Formula $n=1.52$
|
|
\end_inset
|
|
|
|
.
|
|
For gold, we use the optical properties listed in
|
|
\begin_inset CommandInset citation
|
|
LatexCommand cite
|
|
key "johnson_optical_1972"
|
|
literal "false"
|
|
|
|
\end_inset
|
|
|
|
interpolated with cubical splines.
|
|
The particles' cylindrical shape is approximated with a triangular mesh
|
|
with XXX boundary elements.
|
|
\begin_inset Marginal
|
|
status open
|
|
|
|
\begin_layout Plain Layout
|
|
Show the mesh as well?
|
|
\end_layout
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
We consider finite arrays with
|
|
\begin_inset Formula $N_{x}\times N_{y}=\ldots\times\ldots,\ldots\times\ldots,\ldots\times\ldots$
|
|
\end_inset
|
|
|
|
particles and also the corresponding infinite array, and simulate their
|
|
absorption when irradiated by circularly polarised plane waves with energies
|
|
from xx to yy and incidence direction lying in the
|
|
\begin_inset Formula $xz$
|
|
\end_inset
|
|
|
|
plane.
|
|
The results are shown in Figure
|
|
\begin_inset CommandInset ref
|
|
LatexCommand ref
|
|
reference "fig:Example rectangular absorption"
|
|
plural "false"
|
|
caps "false"
|
|
noprefix "false"
|
|
|
|
\end_inset
|
|
|
|
.
|
|
|
|
\begin_inset Marginal
|
|
status open
|
|
|
|
\begin_layout Plain Layout
|
|
Mention lMax.
|
|
\end_layout
|
|
|
|
\end_inset
|
|
|
|
|
|
\begin_inset Float figure
|
|
placement document
|
|
alignment document
|
|
wide false
|
|
sideways false
|
|
status open
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Plain Layout
|
|
\begin_inset Caption Standard
|
|
|
|
\begin_layout Plain Layout
|
|
Absorption of rectangular arrays of golden nanoparticles with periodicities
|
|
|
|
\begin_inset Formula $p_{x}=\SI{621}{nm}$
|
|
\end_inset
|
|
|
|
,
|
|
\begin_inset Formula $p_{y}=\SI{571}{nm}$
|
|
\end_inset
|
|
|
|
with a)
|
|
\begin_inset Formula $\ldots\times\ldots$
|
|
\end_inset
|
|
|
|
, b)
|
|
\begin_inset Formula $\ldots\times\ldots$
|
|
\end_inset
|
|
|
|
, c)
|
|
\begin_inset Formula $\ldots\times\ldots$
|
|
\end_inset
|
|
|
|
and d) infinitely many particles, irradiated by circularly polarised plane
|
|
waves.
|
|
e) Absoption profile of a single nanoparticle.
|
|
|
|
\begin_inset CommandInset label
|
|
LatexCommand label
|
|
name "fig:Example rectangular absorption"
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\end_inset
|
|
|
|
We compared the
|
|
\begin_inset Formula $\ldots\times\ldots$
|
|
\end_inset
|
|
|
|
case with a purely BEM-based solution obtained using the
|
|
\family typewriter
|
|
scuff-scatter
|
|
\family default
|
|
utility.
|
|
TODO WHAT DO WE GET?
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
In the infinite case, we benchmarked against a pseudorandom selection of
|
|
|
|
\begin_inset Formula $\left(\vect k,\omega\right)$
|
|
\end_inset
|
|
|
|
pairs and the difference was TODO WHAT? We note that evaluating one
|
|
\begin_inset Formula $\left(\vect k,\omega\right)$
|
|
\end_inset
|
|
|
|
pair took xxx miliseconds with MSTMM and truncation degree
|
|
\begin_inset Formula $L=?$
|
|
\end_inset
|
|
|
|
, the same took xxx hours with BEM.
|
|
\begin_inset Marginal
|
|
status open
|
|
|
|
\begin_layout Plain Layout
|
|
TODO also details about the machines used.
|
|
More info about time also at least for the largest case.
|
|
\end_layout
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Subsection
|
|
Modes of a rectangular nanoplasmonic array
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Next, we study the eigenmode problem of the same rectangular arrays.
|
|
The system is lossy, therefore the eigenfrequencies are complex and we
|
|
need to have a model of the material optical properties also for complex
|
|
frequencies.
|
|
So in this case we use the Drude-Lorentz model for gold with parameters
|
|
as in [TODO REF].
|
|
\end_layout
|
|
|
|
\begin_layout Subsubsection
|
|
lMax vs radius
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
square lattice of spherical particles at gamma point, modes as a function
|
|
of particle radius for several different lMaxes.
|
|
\end_layout
|
|
|
|
\end_body
|
|
\end_document
|