qpms/qpms/bessels.h

62 lines
2.6 KiB
C

#ifndef BESSELS_H
#define BESSELS_H
/* Short- and long-range parts of spherical Hankel functions
* and (cylindrical) Hankel transforms of the long-range parts.
* Currently, the implementation lies in bessels.c and
* lrhankel_recspace_dirty.c. The latter contains the implementation
* of the Hankel transforms, but currenty only for a pretty limited
* set of parameters. The general implementation is a BIG TODO here.
*/
#include <stddef.h>
#include <complex.h>
complex double *hankelcoefftable_init(size_t maxn);
// For navigating in the coefficients, maybe not for public use
static inline complex double *
trindex_cd(complex double const * const arr, size_t n){
return (complex double *)(arr + n*(n+1)/2);
}
// general, gives the offset such that result[ql] is
// the coefficient corresponding to the e**(I * x) * x**(-ql-1)
// term of the n-th Hankel function; no boundary checks!
static inline complex double *
hankelcoeffs_get(complex double const * const hankelcoefftable, size_t n){
return trindex_cd(hankelcoefftable, n);
}
/* Compute the untransformed long- (optional) and short-range parts of spherical Hankel functions */
// general; target_longrange and target_shortrange are of size (maxn+1)
// if target_longrange is NULL, only the short-range part is calculated
void hankelparts_fill(complex double *target_longrange, /* Not needed for the actual calculations
(only for testing and error estimates)
as summed in the reciprocal space:
pass NULL to omit */
complex double *target_shortrange,
size_t maxn, size_t longrange_order_cutoff, /* terms e**(I x)/x**(k+1),
k>= longrange_order_cutoff go
completely to short-range part */
complex double const * const hankelcoefftable,
unsigned kappa, double c, /* regularisation "slope", dimensionless */
double x); // dimensionless x = k0 * r
/* Hankel transforms of the long-range parts of the spherical Hankel functions */
// this declaration is general; however, the implementation
// is so far only for kappa == 5, maxp <= 5, longrange_order_cutoff <= 1
void lrhankel_recpart_fill(complex double *target_longrange_kspace /*Must be of size maxn*(maxn+1)/2*/,
size_t maxp /* Max. order of the Hankel transform */,
size_t longrange_order_cutoff /* terms e**(I x)/x**(k+1), k>= longrange_order_cutoff go
completely to the shortrange part
index with hankelcoeffs_get(target,p)l[delta_m] */,
complex double const * const hankelcoefftable,
unsigned kappa,
// These are dimensionFUL (inverse lengths):
double cv, double k0, double k);
#endif //BESSELS_H