174 lines
7.5 KiB
Python
Executable File
174 lines
7.5 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import math
|
|
from qpms.argproc import ArgParser
|
|
figscale=2
|
|
|
|
ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', 'single_omega'])
|
|
ap.add_argument("-k", '--wavevector', nargs=2, type=float, required=True, help='"Bloch" vector, modulating phase of the driving', metavar=('KX', 'KY'), default=(0., 0.))
|
|
# ap.add_argument("--kpi", action='store_true', help="Indicates that the k vector is given in natural units instead of SI, i.e. the arguments given by -k shall be automatically multiplied by pi / period (given by -p argument)")
|
|
ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)')
|
|
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
|
|
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
|
|
ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep")
|
|
|
|
#ap.add_argument("--irrep", type=str, default="none", help="Irrep subspace (irrep index from 0 to 7, irrep label, or 'none' for no irrep decomposition")
|
|
|
|
|
|
a=ap.parse_args()
|
|
|
|
import logging
|
|
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
|
|
|
|
Nx, Ny = a.size
|
|
px, py = a.period
|
|
|
|
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
|
|
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
|
|
defaultprefix = "cd_%s_p%gnmx%gnm_%dx%d_m%s_n%g_k_%g_%g_f%geV_L%d" % (
|
|
particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), a.refractive_index, a.wavevector[0], a.wavevector[1], a.eV, a.lMax,)
|
|
logging.info("Default file prefix: %s" % defaultprefix)
|
|
|
|
|
|
import numpy as np
|
|
import qpms
|
|
from qpms.cybspec import BaseSpec
|
|
from qpms.cytmatrices import CTMatrix, TMatrixGenerator
|
|
from qpms.qpms_c import Particle
|
|
from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude
|
|
from qpms.cycommon import DebugFlags, dbgmsg_enable
|
|
from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar
|
|
from qpms.symmetries import point_group_info
|
|
eh = eV/hbar
|
|
|
|
dbgmsg_enable(DebugFlags.INTEGRATION)
|
|
|
|
#Particle positions
|
|
orig_x = (np.arange(Nx/2) + (0 if (Nx % 2) else .5)) * px
|
|
orig_y = (np.arange(Ny/2) + (0 if (Ny % 2) else .5)) * py
|
|
|
|
orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1)
|
|
|
|
|
|
omega = ap.omega
|
|
|
|
bspec = BaseSpec(lMax = a.lMax)
|
|
medium = EpsMuGenerator(ap.background_epsmu)
|
|
particles= [Particle(orig_xy[i], ap.tmgen, bspec) for i in np.ndindex(orig_xy.shape[:-1])]
|
|
|
|
sym = FinitePointGroup(point_group_info['D2h'])
|
|
ss, ssw = ScatteringSystem.create(particles=particles, medium=medium, omega=omega, sym=sym)
|
|
|
|
wavenumber = ap.background_epsmu.k(omega) # Currently, ScatteringSystem does not "remember" frequency nor wavenumber
|
|
|
|
|
|
outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp"
|
|
|
|
nelem = len(bspec)
|
|
phases = np.exp(1j*np.dot(ss.positions[:,:2], np.array(a.wavevector)))
|
|
driving_full = np.zeros((nelem, ss.fecv_size),dtype=complex)
|
|
for y in range(nelem):
|
|
driving_full[y,y::nelem] = phases
|
|
|
|
|
|
scattered_full = np.zeros((nelem, ss.fecv_size),dtype=complex)
|
|
scattered_ir = [None for iri in range(ss.nirreps)]
|
|
|
|
|
|
for iri in range(ss.nirreps):
|
|
logging.info("processing irrep %d/%d" % (iri, ss.nirreps))
|
|
LU = None # to trigger garbage collection before the next call
|
|
translation_matrix = None
|
|
LU = ssw.scatter_solver(iri)
|
|
logging.info("LU solver created")
|
|
#translation_matrix = ss.translation_matrix_packed(wavenumber, iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri])
|
|
#logging.info("auxillary translation matrix created")
|
|
|
|
scattered_ir[iri] = np.empty((nelem, ss.saecv_sizes[iri]), dtype=complex)
|
|
scattered_ir_unpacked = np.empty((nelem, ss.fecv_size), dtype=complex)
|
|
|
|
for y in range(nelem):
|
|
ã = driving_full[y]
|
|
Tã = ssw.apply_Tmatrices_full(ã)
|
|
Tãi = ss.pack_vector(Tã, iri)
|
|
ãi = ss.pack_vector(ã, iri)
|
|
fi = LU(Tãi)
|
|
scattered_ir[iri][y] = fi
|
|
scattered_ir_unpacked[y] = ss.unpack_vector(fi, iri)
|
|
scattered_full[y] += scattered_ir_unpacked[y]
|
|
if a.save_gradually:
|
|
iriout = outfile_tmp + ".%d" % iri
|
|
np.savez(iriout, iri=iri, meta=vars(a),
|
|
omega=omega, wavenumber=wavenumber, nelem=nelem, wavevector=np.array(a.wavevector), phases=phases,
|
|
positions = ss.positions[:,:2],
|
|
scattered_ir_packed = scattered_ir[iri],
|
|
scattered_ir_full = scattered_ir_unpacked,
|
|
)
|
|
logging.info("partial results saved to %s"%iriout)
|
|
|
|
|
|
outfile = defaultprefix + ".npz" if a.output is None else a.output
|
|
np.savez(outfile, meta=vars(a),
|
|
omega=omega, wavenumber=wavenumber, nelem=nelem, wavevector=np.array(a.wavevector), phases=phases,
|
|
positions = ss.positions[:,:2],
|
|
scattered_ir_packed = scattered_ir,
|
|
scattered_full = scattered_full,
|
|
)
|
|
logging.info("Saved to %s" % outfile)
|
|
|
|
|
|
if a.plot or (a.plot_out is not None):
|
|
positions = ss.positions
|
|
xpositions = np.unique(positions[:,0])
|
|
assert(len(xpositions) == Nx)
|
|
ypositions = np.unique(positions[:,1])
|
|
assert(len(ypositions == Ny))
|
|
# particle positions as integer indices
|
|
posmap = np.empty((positions.shape[0],2), dtype=int)
|
|
for i, pos in enumerate(positions):
|
|
posmap[i,0] = np.searchsorted(xpositions, positions[i,0])
|
|
posmap[i,1] = np.searchsorted(ypositions, positions[i,1])
|
|
|
|
def fullvec2grid(fullvec):
|
|
arr = np.empty((Nx,Ny,nelem), dtype=complex)
|
|
for pi, offset in enumerate(ss.fullvec_poffsets):
|
|
ix, iy = posmap[pi]
|
|
arr[ix, iy] = fullvec[offset:offset+nelem]
|
|
return arr
|
|
|
|
import matplotlib
|
|
matplotlib.use('pdf')
|
|
from matplotlib import pyplot as plt, cm
|
|
t, l, m = bspec.tlm()
|
|
phasecm = cm.twilight
|
|
|
|
fig, axes = plt.subplots(nelem, 12, figsize=(figscale*12, figscale*nelem))
|
|
for yp in range(0,3):
|
|
axes[0,4*yp+0].set_title("abs / %s,%d,%+d"%('E' if t[yp]==2 else 'M', l[yp], m[yp],))
|
|
axes[0,4*yp+1].set_title("arg / %s,%d,%+d"%('E' if t[yp]==2 else 'M', l[yp], m[yp],))
|
|
axes[0,4*yp+2].set_title("Fabs / %s,%d,%+d"%('E' if t[yp]==2 else 'M', l[yp], m[yp],))
|
|
axes[0,4*yp+3].set_title("Farg / %s,%d,%+d"%('E' if t[yp]==2 else 'M', l[yp], m[yp],))
|
|
|
|
for y in range(nelem):
|
|
axes[y,0].set_ylabel("%s,%d,%+d"%('E' if t[y]==2 else 'M', l[y], m[y],))
|
|
fulvec = scattered_full[y]
|
|
vecgrid = fullvec2grid(fulvec)
|
|
vecgrid_ff = np.fft.fftshift(np.fft.fft2(vecgrid, axes=(0,1)),axes=(0,1))
|
|
lemax = np.amax(abs(vecgrid))
|
|
for yp in range(0,3):
|
|
if(np.amax(abs(vecgrid[...,yp])) > lemax*1e-5):
|
|
axes[y,yp*4].imshow(abs(vecgrid[...,yp]), vmin=0)
|
|
axes[y,yp*4].text(0.5, 0.5, '%g' % np.amax(abs(vecgrid[...,yp])), horizontalalignment='center', verticalalignment='center', transform=axes[y,yp*4].transAxes)
|
|
axes[y,yp*4+1].imshow(np.angle(vecgrid[...,yp]), vmin=-np.pi, vmax=np.pi, cmap=phasecm)
|
|
axes[y,yp*4+2].imshow(abs(vecgrid_ff[...,yp]), vmin=0)
|
|
axes[y,yp*4+3].imshow(np.angle(vecgrid_ff[...,yp]), vmin=-np.pi, vmax=np.pi, cmap=phasecm)
|
|
else:
|
|
for c in range(0,4):
|
|
axes[y,yp*4+c].tick_params(bottom=False, left=False, labelbottom=False, labelleft=False)
|
|
|
|
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
|
|
fig.savefig(plotfile)
|
|
|
|
exit(0)
|
|
|