42 lines
1.5 KiB
C
42 lines
1.5 KiB
C
#ifndef BESSELS_H
|
|
#define BESSELS_H
|
|
|
|
#include <stddef.h>
|
|
#include <complex.h>
|
|
|
|
complex double *hankelcoefftable_init(size_t maxn);
|
|
|
|
|
|
|
|
static inline complex double *
|
|
trindex_cd(complex double *arr, size_t n){
|
|
return arr + n*(n+1)/2;
|
|
}
|
|
|
|
// general, gives the offset such that result[ql] is
|
|
// the coefficient corresponding to the e**(I * x) * x**(-ql-1)
|
|
// term of the n-th Hankel function; no boundary checks!
|
|
static inline complex double *
|
|
hankelcoeffs_get(complex double *hankelcoefftable, size_t n){
|
|
return trindex_cd(hankelcoefftable, n);
|
|
}
|
|
|
|
// general; target_longrange and target_shortrange are of size (maxn+1)
|
|
// if target_longrange is NULL, only the short-range part is calculated
|
|
void hankelparts_fill(complex double *target_longrange, complex double *target_shortrange,
|
|
size_t maxn, size_t longrange_order_cutoff, // x**(-(order+1)-1) terms go completely to short-range part
|
|
complex double *hankelcoefftable,
|
|
unsigned kappa, double vc, double x); // x = k0 * r
|
|
|
|
|
|
// this declaration is general; however, the implementation
|
|
// is so far only for kappa == ???, maxn == ??? TODO
|
|
void lrhankel_recpart_fill(complex double *target_longrange_kspace /*Must be of size maxn*(maxn+1)/2*/,
|
|
size_t maxp, size_t longrange_k_cutoff /* terms e**(I x)/x**(k+1), k>= longrange_k_cutoff go
|
|
completely to the shortrange part
|
|
index with hankelcoeffs_get(target,p)l[delta_m] */,
|
|
complex double *hankelcoefftable,
|
|
unsigned kappa, double c, double k0, double k);
|
|
|
|
#endif //BESSELS_H
|