qpms/qpms/bessel.c

219 lines
7.1 KiB
C

#include <assert.h>
#include "qpms_specfunc.h"
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include "kahansum.h"
#include <gsl/gsl_sf_bessel.h>
#include <complex.h>
#include "qpms_error.h"
#include <camos.h>
#include <math.h>
#ifndef M_LN2
#define M_LN2 0.69314718055994530942 /* log_e 2 */
#endif
static inline complex double ipow(int x) {
return cpow(I,x);
}
#if 0
// Inspired by scipy/special/_spherical_bessel.pxd
static inline complex double spherical_jn(qpms_l_t l, complex double z) {
if (isnan(creal(z)) || isnan(cimag(z))) return NAN+I*NAN;
if (l < 0) QPMS_WTF;
if (fpclassify(creal(z)) == FP_INFINITE)
if(0 == cimag(z))
return 0;
else
return INFINITY + I * INFINITY;
if (z == 0)
if (l == 0) return 1;
else return 0;
return csqrt(M_PI_2/z) * zbesj(l + .5, z);
}
static inline complex double spherical_yn(qpms_l_t l, complex double z) {
if (isnan(creal(z)) || isnan(cimag(z))) return NAN+I*NAN;
if (l < 0) QPMS_WTF;
if (fpclassify(creal(z)) == FP_INFINITE)
if(0 == cimag(z))
return 0;
else
return INFINITY + I * INFINITY;
if (z == 0)
return NAN;
return csqrt(M_PI_2/z) * zbesy(l + .5, z);
}
#endif
// There is a big issue with gsl's precision of spherical bessel function; these have to be implemented differently
qpms_errno_t qpms_sph_bessel_realx_fill(qpms_bessel_t typ, qpms_l_t lmax, double x, complex double *result_array) {
int retval;
double tmparr[lmax+1];
switch(typ) {
case QPMS_BESSEL_REGULAR:
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
return retval;
break;
case QPMS_BESSEL_SINGULAR: //FIXME: is this precise enough? Would it be better to do it one-by-one?
retval = gsl_sf_bessel_yl_array(lmax,x,tmparr);
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
return retval;
break;
case QPMS_HANKEL_PLUS:
case QPMS_HANKEL_MINUS:
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
if(retval) return retval;
retval = gsl_sf_bessel_yl_array(lmax, x, tmparr);
if (typ==QPMS_HANKEL_PLUS)
for (int l = 0; l <= lmax; ++l) result_array[l] += I * tmparr[l];
else
for (int l = 0; l <= lmax; ++l) result_array[l] +=-I * tmparr[l];
return retval;
break;
default:
abort();
//return GSL_EDOM;
}
assert(0);
}
// TODO DOC
qpms_errno_t qpms_sph_bessel_fill(qpms_bessel_t typ, qpms_l_t lmax, complex double x, complex double *res) {
if(!cimag(x))
return qpms_sph_bessel_realx_fill(typ, lmax, creal(x), res);
else if (isnan(creal(x)) || isnan(cimag(x)))
for(qpms_l_t l = 0; l <= lmax; ++l) res[l] = NAN + I*NAN;
else if (lmax < 0) QPMS_WTF;
else if (fpclassify(creal(x)) == FP_INFINITE)
for(qpms_l_t l = 0; l <= lmax; ++l) res[l] = INFINITY + I * INFINITY;
else {
try_again: ;
int retry_counter = 0;
const double zr = creal(x), zi = cimag(x), fnu = 0.5;
const int n = lmax + 1, kode = 1 /* No exponential scaling */;
double cyr[n], cyi[n];
int ierr, nz;
unsigned int kindchar; // Only for error output
const complex double prefac = csqrt(M_PI_2/x);
switch(typ) {
case QPMS_BESSEL_REGULAR:
kindchar = 'j';
ierr = camos_zbesj(zr, zi, fnu, kode, n, cyr, cyi, &nz);
break;
case QPMS_BESSEL_SINGULAR:
kindchar = 'y';
{
double cwrkr[lmax + 1], cwrki[lmax + 1];
ierr = camos_zbesy(zr, zi, fnu, kode, n, cyr, cyi, &nz, cwrkr, cwrki);
}
break;
case QPMS_HANKEL_PLUS:
case QPMS_HANKEL_MINUS:
kindchar = 'h';
{
const int m = (typ == QPMS_HANKEL_PLUS) ? 1 : 2;
ierr = camos_zbesh(zr, zi, fnu, kode, m, n, cyr, cyi, &nz);
}
break;
default:
QPMS_WTF;
}
// TODO check for underflows? (nz != 0)
if (ierr == 0 || ierr == 3) {
for (qpms_l_t l = 0; l <= lmax; ++l)
res[l] = prefac * (cyr[l] + I * cyi[l]);
if (ierr == 3)
QPMS_WARN("Amos's zbes%c computation done but losses of significance "
"by argument reduction produce less than half of machine accuracy.",
kindchar);
return QPMS_SUCCESS; //TODO maybe something else if ierr == 3
}
else {
if (retry_counter < 5) {
QPMS_WARN("Amos's zbes%c failed with ierr == %d (lMax = %d, x = %+.16g%+.16gi). Retrying.\n",
kindchar, (int) ierr, lmax, creal(x), cimag(x));
++retry_counter;
goto try_again;
} else QPMS_PR_ERROR("Amos's zbes%c failed with ierr == %d (lMax = %d, x = %+.16g%+.16gi).",
kindchar, (int) ierr, lmax, creal(x), cimag(x));
}
}
return QPMS_SUCCESS;
}
static inline ptrdiff_t akn_index(qpms_l_t n, qpms_l_t k) {
assert(k <= n);
return ((ptrdiff_t) n + 1) * n / 2 + k;
}
static inline ptrdiff_t bkn_index(qpms_l_t n, qpms_l_t k) {
assert(k <= n+1);
return ((ptrdiff_t) n + 2) * (n + 1) / 2 - 1 + k;
}
static inline qpms_errno_t qpms_sbessel_calculator_ensure_lMax(qpms_sbessel_calculator_t *c, qpms_l_t lMax) {
if (lMax <= c->lMax)
return QPMS_SUCCESS;
else {
if ( NULL == (c->akn = realloc(c->akn, sizeof(double) * akn_index(lMax + 2, 0))))
abort();
//if ( NULL == (c->bkn = realloc(c->bkn, sizeof(complex double) * bkn_index(lMax + 1, 0))))
// abort();
for(qpms_l_t n = c->lMax+1; n <= lMax + 1; ++n)
for(qpms_l_t k = 0; k <= n; ++k)
c->akn[akn_index(n,k)] = exp(lgamma(n + k + 1) - k*M_LN2 - lgamma(k + 1) - lgamma(n - k + 1));
// ... TODO derivace
c->lMax = lMax;
return QPMS_SUCCESS;
}
}
complex double qpms_sbessel_calc_h1(qpms_sbessel_calculator_t *c, qpms_l_t n, complex double x) {
if(QPMS_SUCCESS != qpms_sbessel_calculator_ensure_lMax(c, n))
abort();
complex double z = I/x;
complex double result = 0;
for (qpms_l_t k = n; k >= 0; --k)
// can we use fma for complex?
//result = fma(result, z, c->akn(n, k));
result = result * z + c->akn[akn_index(n,k)];
result *= z * ipow(-n-2) * cexp(I * x);
return result;
}
qpms_errno_t qpms_sbessel_calc_h1_fill(qpms_sbessel_calculator_t * const c,
const qpms_l_t lMax, const complex double x, complex double * const target) {
if(QPMS_SUCCESS != qpms_sbessel_calculator_ensure_lMax(c, lMax))
abort();
memset(target, 0, sizeof(complex double) * lMax);
complex double kahancomp[lMax];
memset(kahancomp, 0, sizeof(complex double) * lMax);
for(qpms_l_t k = 0; k <= lMax; ++k){
double xp = cpow(x, -k-1);
for(qpms_l_t l = k; l <= lMax; ++l)
ckahanadd(target + l, kahancomp + l, c->akn[akn_index(l,k)] * xp * ipow(k-l-1));
}
complex double eix = cexp(I * x);
for (qpms_l_t l = 0; l <= lMax; ++l)
target[l] *= eix;
return QPMS_SUCCESS;
}
qpms_sbessel_calculator_t *qpms_sbessel_calculator_init() {
qpms_sbessel_calculator_t *c = malloc(sizeof(qpms_sbessel_calculator_t));
c->akn = NULL;
//c->bkn = NULL;
c->lMax = -1;
return c;
}
void qpms_sbessel_calculator_pfree(qpms_sbessel_calculator_t *c) {
if(c->akn) free(c->akn);
//if(c->bkn) free(c->bkn);
free(c);
}