qpms/qpms/beyn.h

87 lines
3.6 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/** \file beyn.h
* \brief Beyn's algorithm for nonlinear eigenvalue problems.
*/
#ifndef BEYN_H
#define BEYN_H
#include <stddef.h>
#include <complex.h>
/// User-supplied function that provides the (row-major) m × m matrix M(z) whose "roots" are to be found.
/** Pure C array version */
typedef int (*beyn_function_M_t)(complex double *target_M, size_t m, complex double z, void *params);
/// (optional) User-supplied function that, given \f$ \hat V \f$, calculates \f$ M(z)^{-1} \hat V \f$.
/** Pure C array version */
typedef int (*beyn_function_M_inv_Vhat_t)(complex double *target_M_inv_Vhat, size_t m, size_t l,
const complex double *Vhat, complex double z, void *params);
/// Complex plane integration contour structure.
typedef struct beyn_contour_t {
size_t n; ///< Number of discretisation points.
/// "Centre" of the contour.
/**
* This point is used in the rescaling of the \f$ A_1 \f$ matrix as in
* Beyn's Remark 3.2 (b) in order to improve the numerical stability.
* It does not have to be a centre in some strictly defined sense,
* but it should be "somewhere around" where the contour is.
*/
complex double centre;
/// Function testing that a point \a z lies inside the contour (optional).
_Bool (*inside_test)(struct beyn_contour_t *, complex double z);
complex double z_dz[][2]; ///< Pairs of contour points and derivatives in that points.
} beyn_contour_t;
/// Complex plane elliptic integration contour with axes parallel to the real, imaginary axes.
/** Free using free(). */
beyn_contour_t *beyn_contour_ellipse(complex double centre, double halfax_re, double halfax_im, size_t npoints);
typedef enum {
BEYN_CONTOUR_HALFELLIPSE_RE_PLUS = 3,
BEYN_CONTOUR_HALFELLIPSE_RE_MINUS = 1,
BEYN_CONTOUR_HALFELLIPSE_IM_PLUS = 0,
BEYN_CONTOUR_HALFELLIPSE_IM_MINUS = 2,
} beyn_contour_halfellipse_orientation;
/// Complex plane "half-elliptic" integration contour with axes parallel to the real, imaginary axes.
/** Free using free(). */
beyn_contour_t *beyn_contour_halfellipse(complex double centre, double halfax_re, double halfax_im, size_t npoints,
beyn_contour_halfellipse_orientation or);
/// Similar to halfellipse but with rounded corners.
beyn_contour_t *beyn_contour_kidney(complex double centre, double halfax_re, double halfax_im,
double rounding, ///< Must be in interval [0, 0.5)
size_t n, beyn_contour_halfellipse_orientation or);
/// Beyn algorithm result structure (pure C array version).
typedef struct beyn_result_t {
size_t neig; ///< Number of eigenvalues found.
size_t vlen; ///< Vector space dimension (also the leading dimension of eigvec).
complex double *eigval;
complex double *eigval_err;
double *residuals;
complex double *eigvec; // Rows are the eigenvectors
double *ranktest_SV;
} beyn_result_t;
void beyn_result_free(beyn_result_t *result);
/// Solve a non-linear eigenproblem using Beyn's algorithm
beyn_result_t *beyn_solve(
size_t m, ///< Dimension of the matrix \a M.
size_t l, ///< Number of columns of the random matrix \f$ \hat V \f$ (larger than the expected number of solutions).
beyn_function_M_t M, ///< Function providing the matrix \f$ M(z) \f$.
beyn_function_M_inv_Vhat_t M_inv_Vhat, ///< Fuction providing the matrix \f$ M^{-1}(z) \hat V \f$ (optional).
void *params, ///< Parameter pointer passed to M() and M_inv_Vhat().
const beyn_contour_t *contour, ///< Integration contour.
double rank_tol, ///< (default: `1e-4`) TODO DOC.
size_t rank_min_sel, ///< Minimum number of eigenvalue candidates, even if they don't pass \a rank_tol.
double res_tol ///< (default: `0.0`) TODO DOC.
);
#endif // BEYN_H