905 lines
24 KiB
Plaintext
905 lines
24 KiB
Plaintext
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
||
\lyxformat 583
|
||
\begin_document
|
||
\begin_header
|
||
\save_transient_properties true
|
||
\origin unavailable
|
||
\textclass article
|
||
\use_default_options true
|
||
\maintain_unincluded_children false
|
||
\language english
|
||
\language_package default
|
||
\inputencoding utf8
|
||
\fontencoding auto
|
||
\font_roman "default" "TeX Gyre Pagella"
|
||
\font_sans "default" "default"
|
||
\font_typewriter "default" "default"
|
||
\font_math "auto" "auto"
|
||
\font_default_family default
|
||
\use_non_tex_fonts false
|
||
\font_sc false
|
||
\font_roman_osf true
|
||
\font_sans_osf false
|
||
\font_typewriter_osf false
|
||
\font_sf_scale 100 100
|
||
\font_tt_scale 100 100
|
||
\use_microtype false
|
||
\use_dash_ligatures false
|
||
\graphics default
|
||
\default_output_format default
|
||
\output_sync 0
|
||
\bibtex_command default
|
||
\index_command default
|
||
\float_placement class
|
||
\float_alignment class
|
||
\paperfontsize default
|
||
\spacing single
|
||
\use_hyperref true
|
||
\pdf_title "Sähköpajan päiväkirja"
|
||
\pdf_author "Marek Nečada"
|
||
\pdf_bookmarks true
|
||
\pdf_bookmarksnumbered false
|
||
\pdf_bookmarksopen false
|
||
\pdf_bookmarksopenlevel 1
|
||
\pdf_breaklinks false
|
||
\pdf_pdfborder false
|
||
\pdf_colorlinks false
|
||
\pdf_backref false
|
||
\pdf_pdfusetitle true
|
||
\papersize default
|
||
\use_geometry false
|
||
\use_package amsmath 1
|
||
\use_package amssymb 1
|
||
\use_package cancel 1
|
||
\use_package esint 1
|
||
\use_package mathdots 1
|
||
\use_package mathtools 1
|
||
\use_package mhchem 1
|
||
\use_package stackrel 1
|
||
\use_package stmaryrd 1
|
||
\use_package undertilde 1
|
||
\cite_engine basic
|
||
\cite_engine_type default
|
||
\biblio_style plain
|
||
\use_bibtopic false
|
||
\use_indices false
|
||
\paperorientation portrait
|
||
\suppress_date false
|
||
\justification true
|
||
\use_refstyle 1
|
||
\use_minted 0
|
||
\use_lineno 0
|
||
\index Index
|
||
\shortcut idx
|
||
\color #008000
|
||
\end_index
|
||
\secnumdepth 3
|
||
\tocdepth 3
|
||
\paragraph_separation indent
|
||
\paragraph_indentation default
|
||
\is_math_indent 0
|
||
\math_numbering_side default
|
||
\quotes_style english
|
||
\dynamic_quotes 0
|
||
\papercolumns 1
|
||
\papersides 1
|
||
\paperpagestyle default
|
||
\tablestyle default
|
||
\tracking_changes false
|
||
\output_changes false
|
||
\html_math_output 0
|
||
\html_css_as_file 0
|
||
\html_be_strict false
|
||
\end_header
|
||
|
||
\begin_body
|
||
|
||
\begin_layout Subsection
|
||
Dual vector spherical harmonics
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
For evaluation of expansion coefficients of incident fields, it is useful
|
||
to introduce „dual“ vector spherical harmonics
|
||
\begin_inset Formula $\vshD{\tau}lm$
|
||
\end_inset
|
||
|
||
defined by duality relation
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
\iint\vshD{\tau'}{l'}{m'}\left(\uvec r\right)\cdot\vsh{\tau}lm\left(\uvec r\right)\,\ud\Omega=\delta_{\tau'\tau}\delta_{l'l}\delta_{m'm}\label{eq:dual vsh}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
(complex conjugation not implied in the dot product here).
|
||
In our convention, we have
|
||
\begin_inset Formula
|
||
\[
|
||
\vshD{\tau}lm\left(\uvec r\right)=\left(\vsh{\tau}lm\left(\uvec r\right)\right)^{*}=\left(-1\right)^{m}\vsh{\tau}{l-}m\left(\uvec r\right).
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Translation operators
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Let
|
||
\begin_inset Formula $\vect r_{1},\vect r_{2}$
|
||
\end_inset
|
||
|
||
be two different origins; a regular VSWF with origin
|
||
\begin_inset Formula $\vect r_{1}$
|
||
\end_inset
|
||
|
||
can be always expanded in terms of regular VSWFs with origin
|
||
\begin_inset Formula $\vect r_{2}$
|
||
\end_inset
|
||
|
||
as follows:
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{1}\right)\right)=\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right),\label{eq:regular vswf translation}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
where an explicit formula for the (regular)
|
||
\emph on
|
||
translation operator
|
||
\emph default
|
||
|
||
\begin_inset Formula $\tropr$
|
||
\end_inset
|
||
|
||
reads in eq.
|
||
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:translation operator"
|
||
|
||
\end_inset
|
||
|
||
below.
|
||
For singular (outgoing) waves, the form of the expansion differs inside
|
||
and outside the ball
|
||
\begin_inset Formula $\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}:$
|
||
\end_inset
|
||
|
||
|
||
\begin_inset Formula
|
||
\begin{eqnarray}
|
||
\vswfouttlm{\tau}lm\left(k\left(\vect r-\vect r_{1}\right)\right) & = & \begin{cases}
|
||
\sum_{\tau'l'm'}\trops_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfouttlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right), & \vect r\in\openball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\vect r_{1}}\\
|
||
\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{2}-\vect r_{1}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{2}\right), & \vect r\notin\closedball{\left\Vert \vect r_{2}-\vect r_{1}\right\Vert }{\left|\vect r_{1}\right|}
|
||
\end{cases},\label{eq:singular vswf translation}
|
||
\end{eqnarray}
|
||
|
||
\end_inset
|
||
|
||
where the singular translation operator
|
||
\begin_inset Formula $\trops$
|
||
\end_inset
|
||
|
||
has the same form as
|
||
\begin_inset Formula $\tropr$
|
||
\end_inset
|
||
|
||
in
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:translation operator"
|
||
|
||
\end_inset
|
||
|
||
except the regular spherical Bessel functions
|
||
\begin_inset Formula $j_{l}$
|
||
\end_inset
|
||
|
||
are replaced with spherical Hankel functions
|
||
\begin_inset Formula $h_{l}^{(1)}$
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\begin_inset Note Note
|
||
status open
|
||
|
||
\begin_layout Plain Layout
|
||
TODO note about expansion exactly on the sphere.
|
||
\end_layout
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
As MSTMM deals most of the time with the
|
||
\emph on
|
||
expansion coefficients
|
||
\emph default
|
||
of fields
|
||
\begin_inset Formula $\rcoeffptlm p{\tau}lm,\outcoeffptlm p{\tau}lm$
|
||
\end_inset
|
||
|
||
in different origins
|
||
\begin_inset Formula $\vect r_{p}$
|
||
\end_inset
|
||
|
||
rather than with the VSWFs directly, let us write down how
|
||
\emph on
|
||
they
|
||
\emph default
|
||
transform under translation.
|
||
Let us assume the field can be in terms of regular waves everywhere, and
|
||
expand it in two different origins
|
||
\begin_inset Formula $\vect r_{p},\vect r_{q}$
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset Formula
|
||
\[
|
||
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\vswfrtlm{\tau}lm\left(k\left(\vect r-\vect r_{p}\right)\right)=\sum_{\tau',l',m'}\rcoeffptlm q{\tau'}{l'}{m'}\vswfrtlm{\tau}{'l'}{m'}\left(k\left(\vect r-\vect r_{q}\right)\right).
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
Re-expanding the waves around
|
||
\begin_inset Formula $\vect r_{p}$
|
||
\end_inset
|
||
|
||
in terms of waves around
|
||
\begin_inset Formula $\vect r_{q}$
|
||
\end_inset
|
||
|
||
using
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:regular vswf translation"
|
||
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset Formula
|
||
\[
|
||
\vect E\left(\vect r,\omega\right)=\sum_{\tau,l,m}\rcoeffptlm p{\tau}lm\sum_{\tau'l'm'}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\vswfrtlm{\tau'}{l'}{m'}\left(\vect r-\vect r_{q}\right)
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
and comparing to the original expansion around
|
||
\begin_inset Formula $\vect r_{q}$
|
||
\end_inset
|
||
|
||
, we obtain
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
\rcoeffptlm q{\tau'}{l'}{m'}=\sum_{\tau,l,m}\tropr_{\tau lm;\tau'l'm'}\left(k\left(\vect r_{q}-\vect r_{p}\right)\right)\rcoeffptlm p{\tau}lm.\label{eq:regular vswf coefficient translation}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
For the sake of readability, we introduce a shorthand matrix form for
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:regular vswf coefficient translation"
|
||
|
||
\end_inset
|
||
|
||
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
\rcoeffp q=\troprp qp\rcoeffp p\label{eq:reqular vswf coefficient vector translation}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
(note the reversed indices; TODO redefine them in
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:regular vswf translation"
|
||
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:singular vswf translation"
|
||
|
||
\end_inset
|
||
|
||
? Similarly, if we had only outgoing waves in the original expansion around
|
||
|
||
\begin_inset Formula $\vect r_{p}$
|
||
\end_inset
|
||
|
||
, we would get
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
\rcoeffp q=\tropsp qp\outcoeffp p\label{eq:singular to regular vswf coefficient vector translation}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
for the expansion inside the ball
|
||
\begin_inset Formula $\openball{\left\Vert \vect r_{q}-\vect r_{p}\right\Vert }{\vect r_{p}}$
|
||
\end_inset
|
||
|
||
|
||
\begin_inset Note Note
|
||
status open
|
||
|
||
\begin_layout Plain Layout
|
||
CHECKME
|
||
\end_layout
|
||
|
||
\end_inset
|
||
|
||
and
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
\outcoeffp q=\troprp qp\outcoeffp p\label{eq:singular to singular vswf coefficient vector translation-1}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
outside.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
In our convention, the regular translation operator can be expressed explicitly
|
||
as
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right)=\dots.\label{eq:translation operator}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
The singular operator
|
||
\begin_inset Formula $\trops$
|
||
\end_inset
|
||
|
||
for re-expanding outgoing waves into regular ones has the same form except
|
||
the regular spherical Bessel functions
|
||
\begin_inset Formula $j_{l}$
|
||
\end_inset
|
||
|
||
in are replaced with spherical Hankel functions
|
||
\begin_inset Formula $h_{l}^{(1)}=j_{l}+iy_{l}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
In our convention, the regular translation operator is unitary,
|
||
\begin_inset Formula $\left(\tropr_{\tau lm;\tau'l'm'}\left(\vect d\right)\right)^{-1}=\tropr_{\tau lm;\tau'l'm'}\left(-\vect d\right)=\tropr_{\tau'l'm';\tau lm}^{*}\left(\vect d\right)$
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset Note Note
|
||
status open
|
||
|
||
\begin_layout Plain Layout
|
||
todo different notation for the complex conjugation without transposition???
|
||
\end_layout
|
||
|
||
\end_inset
|
||
|
||
or in the per-particle matrix notation,
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
\troprp qp^{-1}=\troprp pq=\troprp qp^{\dagger}\label{eq:regular translation unitarity}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
.
|
||
Note that truncation at finite multipole degree breaks the unitarity,
|
||
\begin_inset Formula $\truncated{\troprp qp}L^{-1}\ne\truncated{\troprp pq}L=\truncated{\troprp qp^{\dagger}}L$
|
||
\end_inset
|
||
|
||
, which has to be taken into consideration when evaluating quantities such
|
||
as absorption or scattering cross sections.
|
||
Similarly, the full regular operators can be composed
|
||
\begin_inset Note Note
|
||
status open
|
||
|
||
\begin_layout Plain Layout
|
||
better wording
|
||
\end_layout
|
||
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
\troprp ac=\troprp ab\troprp bc\label{eq:regular translation composition}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
but truncation breaks this,
|
||
\begin_inset Formula $\truncated{\troprp ac}L\ne\truncated{\troprp ab}L\truncated{\troprp bc}L.$
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Plane wave expansion coefficients
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
A transversal (
|
||
\begin_inset Formula $\vect k\cdot\vect E_{0}=0$
|
||
\end_inset
|
||
|
||
) plane wave propagating in direction
|
||
\begin_inset Formula $\uvec k$
|
||
\end_inset
|
||
|
||
with (complex) amplitude
|
||
\begin_inset Formula $\vect E_{0}$
|
||
\end_inset
|
||
|
||
can be expanded into regular VSWFs [REF KRIS]
|
||
\begin_inset Formula
|
||
\[
|
||
\vect E_{\mathrm{PW}}\left(\vect r,\omega\right)=\vect E_{0}e^{ik\uvec k\cdot\vect r}=\sum_{\tau,l,m}\rcoeffptlm{}{\tau}lm\left(\vect k,\vect E_{0}\right)\vswfrtlm{\tau}lm\left(k\vect r\right),
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
with expansion coefficients
|
||
\begin_inset Formula
|
||
\begin{eqnarray}
|
||
\rcoeffptlm{}1lm\left(\vect k,\vect E_{0}\right) & = & 4\pi i^{l}\vshD 1lm\left(\uvec k\right),\nonumber \\
|
||
\rcoeffptlm{}2lm\left(\vect k,\vect E_{0}\right) & = & -4\pi i^{l+1}\vshD 2lm\left(\uvec k\right).\label{eq:plane wave expansion}
|
||
\end{eqnarray}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Multiple-scattering problem
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
\rcoeffp p=\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q\label{eq:particle total incident field coefficient a}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Power transport
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Radiated power
|
||
\begin_inset CommandInset citation
|
||
LatexCommand cite
|
||
after "sect. 7.3"
|
||
key "kristensson_scattering_2016"
|
||
literal "true"
|
||
|
||
\end_inset
|
||
|
||
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
P=\frac{1}{2k^{2}\eta_{0}\eta}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)=\frac{1}{2k^{2}\eta_{0}\eta}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{}.\label{eq:Power transport}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Cross-sections (single-particle)
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Assuming a non-lossy background medium, extinction, scattering and absorption
|
||
cross sections of a single scatterer irradiated by a plane wave propagating
|
||
in direction
|
||
\begin_inset Formula $\uvec k$
|
||
\end_inset
|
||
|
||
and (complex) amplitude
|
||
\begin_inset Formula $\vect E_{0}$
|
||
\end_inset
|
||
|
||
are
|
||
\begin_inset CommandInset citation
|
||
LatexCommand cite
|
||
after "sect. 7.8.2"
|
||
key "kristensson_scattering_2016"
|
||
literal "true"
|
||
|
||
\end_inset
|
||
|
||
|
||
\begin_inset Formula
|
||
\begin{eqnarray}
|
||
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}+\Tp{}^{\dagger}\right)\rcoeffp{},\label{eq:extincion CS single}\\
|
||
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left\Vert \outcoeffp{}\right\Vert ^{2}=\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}\right)\rcoeffp{},\label{eq:scattering CS single}\\
|
||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & \sigma_{\mathrm{ext}}\left(\uvec k\right)-\sigma_{\mathrm{scat}}\left(\uvec k\right)=-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\left(\Re\left(\rcoeffp{}^{\dagger}\outcoeffp{}\right)+\left\Vert \outcoeffp{}\right\Vert ^{2}\right)\nonumber \\
|
||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\rcoeffp{}^{\dagger}\left(\Tp{}^{\dagger}\Tp{}+\frac{\Tp{}^{\dagger}+\Tp{}}{2}\right)\rcoeffp{},\label{eq:absorption CS single}
|
||
\end{eqnarray}
|
||
|
||
\end_inset
|
||
|
||
where
|
||
\begin_inset Formula $\rcoeffp{}=\rcoeffp{}\left(\vect k,\vect E_{0}\right)$
|
||
\end_inset
|
||
|
||
is the vector of plane wave expansion coefficients as in
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:plane wave expansion"
|
||
|
||
\end_inset
|
||
|
||
.
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
For a system of many scatterers, Kristensson
|
||
\begin_inset CommandInset citation
|
||
LatexCommand cite
|
||
after "sect. 9.2.2"
|
||
key "kristensson_scattering_2016"
|
||
literal "false"
|
||
|
||
\end_inset
|
||
|
||
derives only the extinction cross section formula.
|
||
Let us re-derive it together with the many-particle scattering and absorption
|
||
cross sections.
|
||
First, let us take a ball circumscribing all the scatterers at once,
|
||
\begin_inset Formula $\openball R{\vect r_{\square}}\supset\particle$
|
||
\end_inset
|
||
|
||
.
|
||
Outside
|
||
\begin_inset Formula $\openball R{\vect r_{\square}}$
|
||
\end_inset
|
||
|
||
, we can describe the EM fields as if there was only a single scatterer,
|
||
\begin_inset Formula
|
||
\[
|
||
\vect E\left(\vect r\right)=\sum_{\tau,l,m}\left(\rcoeffptlm{\square}{\tau}lm\vswfrtlm{\tau}lm\left(\vect r-\vect r_{\square}\right)+\outcoeffptlm{\square}{\tau}lm\vswfouttlm{\tau}lm\left(\vect r-\vect r_{\square}\right)\right),
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
where
|
||
\begin_inset Formula $\rcoeffp{\square},\outcoeffp{\square}$
|
||
\end_inset
|
||
|
||
are the vectors of VSWF expansion coefficients of the incident and total
|
||
scattered fields, respectively, at origin
|
||
\begin_inset Formula $\vect r_{\square}$
|
||
\end_inset
|
||
|
||
.
|
||
In principle, one could evaluate
|
||
\begin_inset Formula $\outcoeffp{\square}$
|
||
\end_inset
|
||
|
||
using the translation operators (REF!!!) and use the single-scatterer formulae
|
||
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:extincion CS single"
|
||
|
||
\end_inset
|
||
|
||
–
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:absorption CS single"
|
||
|
||
\end_inset
|
||
|
||
with
|
||
\begin_inset Formula $\rcoeffp{}=\rcoeffp{\square},\outcoeffp{}=\outcoeffp{\square}$
|
||
\end_inset
|
||
|
||
to obtain the cross sections.
|
||
However, this is not suitable for numerical evaluation with truncation
|
||
in multipole degree; hence we need to express them in terms of particle-wise
|
||
expansions
|
||
\begin_inset Formula $\rcoeffp p,\outcoeffp p$
|
||
\end_inset
|
||
|
||
.
|
||
The original incident field re-expanded around
|
||
\begin_inset Formula $p$
|
||
\end_inset
|
||
|
||
-th particle reads according to
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:regular vswf translation"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
\rcoeffincp p=\troprp p{\square}\rcoeffp{\square}\label{eq:a_inc local from global}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
whereas the contributions of fields scattered from each particle expanded
|
||
around the global origin
|
||
\begin_inset Formula $\vect r_{\square}$
|
||
\end_inset
|
||
|
||
is, according to
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:singular vswf translation"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
\outcoeffp{\square}=\sum_{q\in\mathcal{P}}\troprp{\square}q\outcoeffp q.\label{eq:f global from local}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
Using the unitarity
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:regular translation unitarity"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
and composition
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:regular translation composition"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
properties, one has
|
||
\begin_inset Formula
|
||
\begin{align}
|
||
\rcoeffp{\square}^{\dagger}\outcoeffp{\square} & =\rcoeffincp p^{\dagger}\troprp p{\square}\troprp{\square}q\outcoeffp q=\rcoeffincp p^{\dagger}\sum_{q\in\mathcal{P}}\troprp pqf_{q}\nonumber \\
|
||
& =\sum_{q\in\mathcal{P}}\left(\troprp qp\rcoeffincp p\right)^{\dagger}f_{q}=\sum_{q\in\mathcal{P}}\rcoeffincp q^{\dagger}f_{q},\label{eq:atf form multiparticle}
|
||
\end{align}
|
||
|
||
\end_inset
|
||
|
||
where only the last expression is suitable for numerical evaluation with
|
||
truncated matrices, because the previous ones contain a translation operator
|
||
right next to an incident field coefficient vector (see Sec.
|
||
TODO).
|
||
Similarly,
|
||
\begin_inset Formula
|
||
\begin{align}
|
||
\left\Vert \outcoeffp{\square}\right\Vert ^{2} & =\outcoeffp{\square}^{\dagger}\outcoeffp{\square}=\sum_{p\in\mathcal{P}}\left(\troprp{\square}p\outcoeffp p\right)^{\dagger}\sum_{q\in\mathcal{P}}\troprp{\square}q\outcoeffp q\nonumber \\
|
||
& =\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q.\label{eq:f squared form multiparticle}
|
||
\end{align}
|
||
|
||
\end_inset
|
||
|
||
Substituting
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:atf form multiparticle"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:f squared form multiparticle"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
into
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:scattering CS single"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
and
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:absorption CS single"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
, we get the many-particle expressions for extinction, scattering and absorption
|
||
cross sections suitable for numerical evaluation:
|
||
\begin_inset Formula
|
||
\begin{eqnarray}
|
||
\sigma_{\mathrm{ext}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\outcoeffp p=-\frac{1}{2k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\Re\sum_{p\in\mathcal{P}}\rcoeffincp p^{\dagger}\left(\Tp p+\Tp p^{\dagger}\right)\rcoeffp p,\label{eq:extincion CS multi}\\
|
||
\sigma_{\mathrm{scat}}\left(\uvec k\right) & = & \frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q\nonumber \\
|
||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\rcoeffp p^{\dagger}\Tp p^{\dagger}\troprp pq\Tp q\rcoeffp q,\label{eq:scattering CS multi}\\
|
||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & = & -\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}}\troprp pq\outcoeffp q\right)\right)\nonumber \\
|
||
& & =\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\mbox{TODO}.\label{eq:absorption CS multi}
|
||
\end{eqnarray}
|
||
|
||
\end_inset
|
||
|
||
An alternative approach to derive the absorption cross section is via a
|
||
power transport argument.
|
||
Note the direct proportionality between absorption cross section
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:absorption CS single"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
and net radiated power for single scatterer
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:Power transport"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset Formula $\sigma_{\mathrm{abs}}=-\eta_{0}\eta P/2\left\Vert \vect E_{0}\right\Vert ^{2}$
|
||
\end_inset
|
||
|
||
.
|
||
In the many-particle setup (with non-lossy background medium, so that only
|
||
the particles absorb), the total absorbed power is equal to the sum of
|
||
absorbed powers on each particle,
|
||
\begin_inset Formula $-P=\sum_{p\in\mathcal{P}}-P_{p}$
|
||
\end_inset
|
||
|
||
.
|
||
Using the power transport formula
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:Power transport"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
particle-wise gives
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
\sigma_{\mathrm{abs}}\left(\uvec k\right)=-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\left(\Re\left(\rcoeffp p^{\dagger}\outcoeffp p\right)+\left\Vert \outcoeffp p\right\Vert ^{2}\right)\label{eq:absorption CS multi alternative}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
which seems different from
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:absorption CS multi"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
, but using
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:particle total incident field coefficient a"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
, we can rewrite it as
|
||
\begin_inset Formula
|
||
\begin{align*}
|
||
\sigma_{\mathrm{abs}}\left(\uvec k\right) & =-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffp p+\outcoeffp p\right)\right)\\
|
||
& =-\frac{1}{k^{2}\left\Vert \vect E_{0}\right\Vert ^{2}}\sum_{p\in\mathcal{P}}\Re\left(\outcoeffp p^{\dagger}\left(\rcoeffincp p+\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\tropsp pq\outcoeffp q+\outcoeffp p\right)\right).
|
||
\end{align*}
|
||
|
||
\end_inset
|
||
|
||
It is easy to show that all the terms of
|
||
\begin_inset Formula $\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q$
|
||
\end_inset
|
||
|
||
containing the singular spherical Bessel functions
|
||
\begin_inset Formula $y_{l}$
|
||
\end_inset
|
||
|
||
are imaginary,
|
||
\begin_inset Note Note
|
||
status open
|
||
|
||
\begin_layout Plain Layout
|
||
TODO better formulation
|
||
\end_layout
|
||
|
||
\end_inset
|
||
|
||
so that actually
|
||
\begin_inset Formula $\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\tropsp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\Re\left(\sum_{q\in\mathcal{P}\backslash\left\{ p\right\} }\outcoeffp p^{\dagger}\troprp pq\outcoeffp q+\outcoeffp p^{\dagger}\troprp pp\outcoeffp p\right)=\sum_{p\in\mathcal{P}}\sum_{q\in\mathcal{P}}\outcoeffp p^{\dagger}\troprp pq\outcoeffp q,$
|
||
\end_inset
|
||
|
||
proving that the expressions in
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:absorption CS multi"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
and
|
||
\begin_inset CommandInset ref
|
||
LatexCommand ref
|
||
reference "eq:absorption CS multi alternative"
|
||
plural "false"
|
||
caps "false"
|
||
noprefix "false"
|
||
|
||
\end_inset
|
||
|
||
are equal.
|
||
\end_layout
|
||
|
||
\end_body
|
||
\end_document
|