qpms/qpms/tmatrices.h

441 lines
18 KiB
C

/* \file tmatrices.h
* \brief T-matrices for scattering systems.
*/
#ifndef TMATRICES_H
#define TMATRICES_H
#include "qpms_types.h"
#include <gsl/gsl_spline.h>
#include <stdio.h>
struct qpms_finite_group_t;
typedef struct qpms_finite_group_t qpms_finite_group_t;
/// Returns a pointer to the beginning of the T-matrix row \a rowno.
static inline complex double *qpms_tmatrix_row(qpms_tmatrix_t *t, size_t rowno){
return t->m + (t->spec->n * rowno);
}
/// Initialises a zero T-matrix.
qpms_tmatrix_t *qpms_tmatrix_init(const qpms_vswf_set_spec_t *bspec);
/// Copies a T-matrix, allocating new array for the T-matrix data.
qpms_tmatrix_t *qpms_tmatrix_copy(const qpms_tmatrix_t *T);
/// Destroys a T-matrix.
void qpms_tmatrix_free(qpms_tmatrix_t *t);
/// Check T-matrix equality/similarity.
/**
* This function actually checks for identical vswf specs.
* TODO define constants with "default" atol, rtol for this function.
*/
bool qpms_tmatrix_isclose(const qpms_tmatrix_t *T1, const qpms_tmatrix_t *T2,
const double rtol, const double atol);
/// Creates a T-matrix from another matrix and a symmetry operation.
/** The symmetry operation is expected to be a unitary (square)
* matrix \a M with the same
* VSWF basis spec as the T-matrix (i.e. \a t->spec). The new T-matrix will then
* correspond to CHECKME \f[ T' = MTM^\dagger \f]
*/
qpms_tmatrix_t *qpms_tmatrix_apply_symop(
const qpms_tmatrix_t *T, ///< the original T-matrix
const complex double *M ///< the symmetry op matrix in row-major format
);
/// Applies a symmetry operation onto a T-matrix, rewriting the original T-matrix data.
/** The symmetry operation is expected to be a unitary (square)
* matrix \a M with the same
* VSWF basis spec as the T-matrix (i.e. \a t->spec). The new T-matrix will then
* correspond to CHECKME \f[ T' = MTM^\dagger \f]
*/
qpms_tmatrix_t *qpms_tmatrix_apply_symop_inplace(
qpms_tmatrix_t *T, ///< the original T-matrix
const complex double *M ///< the symmetry op matrix in row-major format
);
/// Symmetrizes a T-matrix with an involution symmetry operation.
/** The symmetry operation is expected to be a unitary (square)
* matrix \a M with the same
* VSWF basis spec as the T-matrix (i.e. \a t->spec). The new T-matrix will then
* correspond to CHECKME \f[ T' = \frac{T + MTM^\dagger}{2} \f]
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_involution(
const qpms_tmatrix_t *T, ///< the original T-matrix
const complex double *M ///< the symmetry op matrix in row-major format
);
/// Creates a \f$ C_\infty \f$ -symmetrized version of a T-matrix.
/**
* \f[ {T'}_{tlm}^{\tau\lambda\mu} = T_{tlm}^{\tau\lambda\mu} \delta_{m\mu} \f]
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_C_inf(
const qpms_tmatrix_t *T ///< the original T-matrix
);
/// Creates a \f$ C_N \f$ -symmetrized version of a T-matrix.
/**
* \f[ {T'}_{tlm}^{\tau\lambda\mu} = \begin{cases}
* T{}_{lm}^{\lambda\mu} & (m-\mu)\mod N=0\\
* 0 & (m-\mu)\mod N\ne0
* \end{cases} . \f]
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_C_N(
const qpms_tmatrix_t *T, ///< the original T-matrix
int N ///< number of z-axis rotations in the group
);
/// Symmetrizes a T-matrix with an involution symmetry operation, rewriting the original one.
/** The symmetry operation is expected to be a unitary (square)
* matrix \a M with the same
* VSWF basis spec as the T-matrix (i.e. \a t->spec). The new T-matrix will then
* correspond to CHECKME \f[ T' = \frac{T + MTM^\dagger}{2} \f]
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_involution_inplace(
qpms_tmatrix_t *T, ///< the original T-matrix
const complex double *M ///< the symmetry op matrix in row-major format
);
/// Creates a \f$ C_\infty \f$ -symmetrized version of a T-matrix, rewriting the original one.
/**
* \f[ {T'}_{tlm}^{\tau\lambda\mu} = T_{tlm}^{\tau\lambda\mu} \delta_{m\mu} \f]
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_C_inf_inplace(
qpms_tmatrix_t *T ///< the original T-matrix
);
/// Creates a \f$ C_N \f$ -symmetrized version of a T-matrix, rewriting the original one.
/**
* \f[ {T'}_{tlm}^{\tau\lambda\mu} = \begin{cases}
* T{}_{lm}^{\lambda\mu} & (m-\mu)\mod N=0\\
* 0 & (m-\mu)\mod N\ne0
* \end{cases} . \f]
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_C_N_inplace(
qpms_tmatrix_t *T, ///< the original T-matrix
int N ///< number of z-axis rotations in the group
);
/// Reads an open scuff-tmatrix generated file.
/**
* \a *freqs, \a *freqs_su, \a *tmatrices_array and \a *tmdata
* arrays are allocated by this function
* and have to be freed by the caller after use.
* \a freqs_su and \a tmatrices_array can be NULL, in that case
* the respective arrays are not filled nor allocated.
*
* The contents of tmatrices_array is NOT
* supposed to be freed element per element.
*
* TODO more checks and options regarding NANs etc.
*
*/
qpms_errno_t qpms_load_scuff_tmatrix(
const char *path, ///< Path to the TMatrix file
const qpms_vswf_set_spec_t *bspec, ///< VSWF set spec
size_t *n, ///< Number of successfully loaded t-matrices
double **freqs, ///< Frequencies in SI units..
double **freqs_su, ///< Frequencies in SCUFF units (optional).
/// The resulting T-matrices (optional).
qpms_tmatrix_t **tmatrices_array,
complex double **tmdata ///< The T-matrices raw contents
);
/// Tells whether qpms_load_scuff_tmatrix should crash if fopen() fails.
/** If true (default), the function causes the program
* die e.g. when the tmatrix file
* does not exists.
*
* If false, it does nothing and returns an appropriate error value instead.
* This is desirable e.g. when used in Python (so that proper exception can
* be thrown).
*/
extern bool qpms_load_scuff_tmatrix_crash_on_failure;
/// Loads a scuff-tmatrix generated file.
/** A simple wrapper over qpms_read_scuff_tmatrix() that needs a
* path instead of open FILE.
*
* The T-matrix is transformed from the VSWF basis defined by
* QPMS_NORMALISATION_CONVENTION_SCUFF into the basis defined
* by convention bspec->norm.
*
* Right now, bspec->norm with real or "reversed complex" spherical
* harmonics are not supported.
*/
qpms_errno_t qpms_read_scuff_tmatrix(
FILE *f, ///< An open stream with the T-matrix data.
const qpms_vswf_set_spec_t *bspec, ///< VSWF set spec
size_t *n, ///< Number of successfully loaded t-matrices
double **freqs, ///< Frequencies in SI units.
double **freqs_su, ///< Frequencies in SCUFF units (optional).
/// The resulting T-matrices (optional).
qpms_tmatrix_t **tmatrices_array,
/// The T-matrices raw contents.
/** The coefficient of outgoing wave defined by
* \a bspec->ilist[desti] as a result of incoming wave
* \a bspec->ilist[srci] at frequency \a (*freqs)[fi]
* is accessed via
* (*tmdata)[bspec->n*bspec->n*fi + desti*bspec->n + srci].
*/
complex double ** tmdata
);
/// In-place application of point group elements on raw T-matrix data.
/** \a tmdata can be e.g. obtained by qpms_load_scuff_tmatrix().
* The \a symops array should always contain all elements of a finite
* point (sub)group, including the identity operation.
*
* TODO more doc.
*/
qpms_errno_t qpms_symmetrise_tmdata_irot3arr(
complex double *tmdata, const size_t tmcount,
const qpms_vswf_set_spec_t *bspec,
size_t n_symops,
const qpms_irot3_t *symops
);
/// In-place application of a point group on raw T-matrix data.
/** This does the same as qpms_symmetrise_tmdata_irot3arr(),
* but takes a valid finite point group as an argument.
*
* TODO more doc.
*/
qpms_errno_t qpms_symmetrise_tmdata_finite_group(
complex double *tmdata, const size_t tmcount,
const qpms_vswf_set_spec_t *bspec,
const qpms_finite_group_t *pointgroup
);
/// In-place application of point group elements on a T-matrix.
/** The \a symops array should always contain all elements of a finite
* point (sub)group, including the identity operation.
*
* TODO more doc.
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_irot3arr_inplace(
qpms_tmatrix_t *T,
size_t n_symops,
const qpms_irot3_t *symops
);
/// In-place application of point group elements on a T-matrix.
/** This does the same as qpms_tmatrix_symmetrise_irot3arr(),
* but takes a valid finite point group as an argument.
*
* TODO more doc.
*/
qpms_tmatrix_t *qpms_tmatrix_symmetrise_finite_group_inplace(
qpms_tmatrix_t *T,
const qpms_finite_group_t *pointgroup
);
/// Application of T-matrix on a vector of incident field coefficients, \f$ f = Ta \f$.
complex double *qpms_apply_tmatrix(
complex double *f_target, ///< Scattered field coefficient array of size T->spec->n; if NULL, a new one is allocated.
const complex double *a, ///< Incident field coefficient array of size T->spec->n.
const qpms_tmatrix_t *T
);
/* Fuck this, include the whole <gsl/gsl_spline.h>
typedef struct gsl_spline gsl_spline; // Forward declaration for the interpolator struct
typedef struct gsl_interp_type gsl_interp_type;
extern const gsl_interp_type * gsl_interp_linear;
extern const gsl_interp_type * gsl_interp_polynomial;
extern const gsl_interp_type * gsl_interp_cspline;
extern const gsl_interp_type * gsl_interp_cspline_periodic;
extern const gsl_interp_type * gsl_interp_akima;
extern const gsl_interp_type * gsl_interp_akima_periodic;
extern const gsl_interp_type * gsl_interp_steffen;
*/
// struct gsl_interp_accel; // use if lookup proves to be too slow
typedef struct qpms_tmatrix_interpolator_t {
const qpms_vswf_set_spec_t *bspec;
//bool owns_bspec;
gsl_spline **splines_real; ///< There will be a spline object for each nonzero element
gsl_spline **splines_imag; ///< There will be a spline object for each nonzero element
// gsl_interp_accel **accel_real;
// gsl_interp_accel **accel_imag;
} qpms_tmatrix_interpolator_t;
/// Free a T-matrix interpolator.
void qpms_tmatrix_interpolator_free(qpms_tmatrix_interpolator_t *interp);
/// Fills an existing T-matrix with new interpolated values.
qpms_errno_t qpms_tmatrix_interpolator_eval_fill(qpms_tmatrix_t *target, ///< T-matrix to be updated, not NULL.
const qpms_tmatrix_interpolator_t *interp, double freq);
/// Evaluate a T-matrix interpolated value.
/** The result is to be freed using qpms_tmatrix_free().*/
qpms_tmatrix_t *qpms_tmatrix_interpolator_eval(const qpms_tmatrix_interpolator_t *interp, double freq);
/// Create a T-matrix interpolator from frequency and T-matrix arrays.
qpms_tmatrix_interpolator_t *qpms_tmatrix_interpolator_create(size_t n, ///< Number of freqs and T-matrices provided.
const double *freqs, const qpms_tmatrix_t *tmatrices_array, ///< N.B. array of qpms_tmatrix_t, not pointers!
const gsl_interp_type *iptype
//, bool copy_bspec ///< if true, copies its own copy of basis spec from the first T-matrix.
/*, ...? */);
/// Interpolator of tabulated optical properties.
// TODO use gsl_interp instead of gsl_spline.
typedef struct qpms_permittivity_interpolator_t {
double *wavelength_m; ///< Wavelength array (in meters).
double *n; ///< Refraction index array.
double *k; ///< Attenuation coefficient array.
gsl_interp *interp_n; ///< Refraction index interpolator object.
gsl_interp *interp_k; ///< Attenuation coeff interpolator object.
size_t size; ///< Size of n[], k[], and wavelength_m[].
// I could add gsl_interp_accel, but that is not necessary.
} qpms_permittivity_interpolator_t;
/// Creates a permittivity interpolator from tabulated wavelengths, refraction indices and extinction coeffs.
qpms_permittivity_interpolator_t *qpms_permittivity_interpolator_create(const size_t incount,
const double *wavelength_m, ///< Tabulated vacuum wavelength in metres, in strictly increasing order.
const double *n, ///< Tabulated refraction indices at omega.
const double *k, ///< Tabulated extinction coefficients.
const gsl_interp_type *iptype ///< GSL interpolator type
);
/// Creates a permittivity interpolator from an yml file downloaded from refractiveindex.info website.
qpms_permittivity_interpolator_t *qpms_permittivity_interpolator_from_yml(
const char *path, ///< Path to the yml file.
const gsl_interp_type *iptype ///< GSL interpolator type
);
/// Evaluates interpolated material permittivity at a given angular frequency.
complex double qpms_permittivity_interpolator_eps_at_omega(
const qpms_permittivity_interpolator_t *interp, double omega_SI);
/// Returns the minimum angular frequency supported by the interpolator.
double qpms_permittivity_interpolator_omega_min(
const qpms_permittivity_interpolator_t *ip);
/// Returns the minimum angular frequency supported by the interpolator.
double qpms_permittivity_interpolator_omega_max(
const qpms_permittivity_interpolator_t *ip);
/// Destroy a permittivity interpolator.
void qpms_permittivity_interpolator_free(qpms_permittivity_interpolator_t *interp);
/// Calculates the reflection Mie-Lorentz coefficients for a spherical particle.
/**
* This function is based on the previous python implementation mie_coefficients() from qpms_p.py,
* so any bugs therein should affect this function as well and perhaps vice versa.
*
* Most importantly, the case of magnetic material, \a mu_i != 0 or \a mu_e != 0 has never been tested
* and might give wrong results.
*
* \return Array with the Mie-Lorentz reflection coefficients in the order determined by bspec.
* If \a target was not NULL, this is target, otherwise a newly allocated array.
*
* TODO better doc.
*/
complex double *qpms_mie_coefficients_reflection(
complex double *target, ///< Target array of length bspec->n. If NULL, a new one will be allocated.
const qpms_vswf_set_spec_t *bspec, ///< Defines which of the coefficients are calculated.
double a, ///< Radius of the sphere.
complex double k_i, ///< Wave number of the internal material of the sphere.
complex double k_e, ///< Wave number of the surrounding medium.
complex double mu_i, ///< Relative permeability of the sphere material.
complex double mu_e, ///< Relative permeability of the surrounding medium.
qpms_bessel_t J_ext, ///< Kind of the "incoming" waves. Most likely QPMS_BESSEL_REGULAR.
qpms_bessel_t J_scat ///< Kind of the "scattered" waves. Most likely QPMS_HANKEL_PLUS.
);
/// Replaces the contents of an existing T-matrix with that of a spherical nanoparticle calculated using the Lorentz-mie theory.
qpms_errno_t qpms_tmatrix_spherical_fill(qpms_tmatrix_t *t, ///< T-matrix whose contents are to be replaced. Not NULL.
double a, ///< Radius of the sphere.
complex double k_i, ///< Wave number of the internal material of the sphere.
complex double k_e, ///< Wave number of the surrounding medium.
complex double mu_i, ///< Relative permeability of the sphere material.
complex double mu_e ///< Relative permeability of the surrounding medium.
);
/// Creates a new T-matrix of a spherical particle using the Lorentz-Mie theory.
static inline qpms_tmatrix_t *qpms_tmatrix_spherical(
const qpms_vswf_set_spec_t *bspec,
double a, ///< Radius of the sphere.
complex double k_i, ///< Wave number of the internal material of the sphere.
complex double k_e, ///< Wave number of the surrounding medium.
complex double mu_i, ///< Relative permeability of the sphere material.
complex double mu_e ///< Relative permeability of the surrounding medium.
) {
qpms_tmatrix_t *t = qpms_tmatrix_init(bspec);
qpms_tmatrix_spherical_fill(t, a, k_i, k_e, mu_i, mu_e);
return t;
}
/// Relative permittivity from the Drude model.
static inline complex double qpms_drude_epsilon(
complex double eps_inf, ///< Relative permittivity "at infinity".
complex double omega_p, ///< Plasma frequency \f$ \omega_p \f$ of the material.
complex double gamma_p, ///< Decay constant \f$ \gamma_p \f$ of the material.
complex double omega ///< Frequency \f$ \omega \f$ at which the permittivity is evaluated.
) {
return eps_inf - omega_p*omega_p/(omega*(omega+I*gamma_p));
}
/// Convenience function to calculate T-matrix of a non-magnetic spherical \
particle using the permittivity values, replacing existing T-matrix data.
qpms_errno_t qpms_tmatrix_spherical_mu0_fill(
qpms_tmatrix_t *t, ///< T-matrix whose contents are to be replaced. Not NULL.
double a, ///< Radius of the sphere.
double omega, ///< Angular frequency.
complex double epsilon_fg, ///< Relative permittivity of the sphere.
complex double epsilon_bg ///< Relative permittivity of the background medium.
);
/// Convenience function to calculate T-matrix of a non-magnetic spherical particle using the permittivity values.
static inline qpms_tmatrix_t *qpms_tmatrix_spherical_mu0(
const qpms_vswf_set_spec_t *bspec,
double a, ///< Radius of the sphere.
double omega, ///< Angular frequency.
complex double epsilon_fg, ///< Relative permittivity of the sphere.
complex double epsilon_bg ///< Relative permittivity of the background medium.
) {
qpms_tmatrix_t *t = qpms_tmatrix_init(bspec);
qpms_tmatrix_spherical_mu0_fill(t, a, omega, epsilon_fg, epsilon_bg);
};
#if 0
// Abstract types that describe T-matrix/particle/scatsystem symmetries
// To be implemented later. See also the thoughts in the beginning of groups.h.
typedef *char qpms_tmatrix_id_t; ///< Maybe I want some usual integer type instead.
///Abstract T-matrix type draft.
/**
* TODO.
*/
typedef struct qpms_abstract_tmatrix_t{
qpms_tmatrix_id_t id;
/// Generators of the discrete point group under which T-matrix is invariant.
qpms_irot3_t *invar_gens;
/// Length of invar_gens.
qpms_gmi_t invar_gens_size;
} qpms_abstract_tmatrix_t;
typedef struct qpms_abstract_particle_t{
} qpms_abstract_particle_t;
/// An abstract particle, defined by its position and abstract T-matrix.
typedef struct qpms_abstract_particle_t {
cart3_t pos; ///< Particle position in cartesian coordinates.
const qpms_abstract_tmatrix_t *tmatrix; ///< T-matrix; not owned by this.
} qpms_abstract_particle_t;
/** This is just an alias, as the same index can be used for
* abstract T-matrices as well.
*/
typedef qpms_particle_tid_t qpms_abstract_particle_tid_t;
#endif // 0
#endif //TMATRICES_H