qpms/misc/finitesqlatzsym-scatter.py

377 lines
18 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
import argparse, re, random, string, sys
import subprocess
import warnings
from scipy.constants import hbar, e as eV, pi, c
unitcell_size = 1 # rectangular lattice
unitcell_indices = tuple(range(unitcell_size))
def make_action_sharedlist(opname, listname):
class opAction(argparse.Action):
def __call__(self, parser, args, values, option_string=None):
if (not hasattr(args, listname)) or getattr(args, listname) is None:
setattr(args, listname, list())
getattr(args,listname).append((opname, values))
return opAction
parser = argparse.ArgumentParser()
#TODO? použít type=argparse.FileType('r') ?
parser.add_argument('--TMatrix', action='store', required=True, help='Path to TMatrix file')
#parser.add_argument('--griddir', action='store', required=True, help='Path to the directory with precalculated translation operators')
parser.add_argument('--output_prefix', '-p', '-o', action='store', required=True, help='Prefix to the npz output (will be appended frequency, hexside and chunkno)')
parser.add_argument('--nosuffix', action='store_true', help='Do not add dimension metadata to the output filenames')
#sizepar = parser.add_mutually_exclusive_group(required=True)
#parser.add_argument('--hexside', action='store', type=float, required=True, help='Lattice hexagon size length')
parser.add_argument('--dx', action='store', type=float, required=True, help='x-direction lattice constant')
parser.add_argument('--dy', action='store', type=float, required=True, help='y-direction lattice constant')
parser.add_argument('--Nx', '--nx', action='store', type=int, required=True, help='Lattice points in the x-direction')
parser.add_argument('--Ny', '--ny', action='store', type=int, required=True, help='Lattice points in the y-direction')
# In these default settings, the area is 2x2 times larger than first BZ
parser.add_argument('--kxmin', action='store', type=float, default=-1., help='TODO')
parser.add_argument('--kxmax', action='store', type=float, default=1., help='TODO')
parser.add_argument('--kymin', action='store', type=float, default=-1., help='TODO')
parser.add_argument('--kymax', action='store', type=float, default=1., help='TODO')
#parser.add_argument('--kdensity', action='store', type=int, default=33, help='Number of k-points per x-axis segment')
parser.add_argument('--kxdensity', action='store', type=int, default=51, help='k-space resolution in the x-direction')
parser.add_argument('--kydensity', action='store', type=int, default=51, help='k-space resolution in the y-direction')
partgrp = parser.add_mutually_exclusive_group()
partgrp.add_argument('--only_TE', action='store_true', help='Calculate only the projection on the E⟂z modes')
partgrp.add_argument('--only_TM', action='store_true', help='Calculate only the projection on the E∥z modes')
partgrp.add_argument('--serial', action='store_true', help='Calculate the TE and TM parts separately to save memory')
parser.add_argument('--nocentre', action='store_true', help='Place the coordinate origin to the left bottom corner rather that to the centre of the array')
parser.add_argument('--plot_TMatrix', action='store_true', help='Visualise TMatrix on the first page of the output')
#parser.add_argument('--SVD_output', action='store', help='Path to output singular value decomposition result')
parser.add_argument('--maxlayer', action='store', type=int, default=100, help='How far to sum the lattice points to obtain the dispersion')
parser.add_argument('--scp_to', action='store', metavar='N', type=str, help='SCP the output files to a given destination')
parser.add_argument('--background_permittivity', action='store', type=float, default=1., help='Background medium relative permittivity (default 1)')
parser.add_argument('--eVfreq', action='store', required=True, type=float, help='Frequency in eV')
parser.add_argument('--chunklen', action='store', type=int, default=3000, help='Number of k-points per output file (default 3000)')
parser.add_argument('--lMax', action='store', type=int, help='Override lMax from the TMatrix file')
#TODO some more sophisticated x axis definitions
#parser.add_argument('--gaussian', action='store', type=float, metavar='σ', help='Use a gaussian envelope for weighting the interaction matrix contributions (depending on the distance), measured in unit cell lengths (?) FIxME).')
parser.add_argument('--verbose', '-v', action='count', help='Be verbose (about computation times, mostly)')
popgrp=parser.add_argument_group(title='Operations')
popgrp.add_argument('--tr', dest='ops', action=make_action_sharedlist('tr', 'ops'), default=list()) # the default value for dest can be set once
for i in unitcell_indices:
popgrp.add_argument('--tr%d'%i, dest='ops', action=make_action_sharedlist('tr%d'%i, 'ops'))
popgrp.add_argument('--sym', dest='ops', action=make_action_sharedlist('sym', 'ops'))
for i in unitcell_indices:
popgrp.add_argument('--sym%d'%i, dest='ops', action=make_action_sharedlist('sym%d'%i, 'ops'))
#popgrp.add_argument('--mult', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult', 'ops'))
#popgrp.add_argument('--mult0', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult0', 'ops'))
#popgrp.add_argument('--mult1', dest='ops', nargs=3, metavar=('INCSPEC', 'SCATSPEC', 'MULTIPLIER'), action=make_action_sharedlist('mult1', 'ops'))
popgrp.add_argument('--multl', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl', 'ops'))
for i in unitcell_indices:
popgrp.add_argument('--multl%d'%i, dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl%d'%i, 'ops'))
#popgrp.add_argument('--multl1', dest='ops', nargs=3, metavar=('INCL[,INCL,...]', 'SCATL[,SCATL,...]', 'MULTIPLIER'), action=make_action_sharedlist('multl1', 'ops'))
parser.add_argument('--frequency_multiplier', action='store', type=float, default=1., help='Multiplies the frequencies in the TMatrix file by a given factor.')
# TODO enable more flexible per-sublattice specification
pargs=parser.parse_args()
if pargs.verbose:
print(pargs, file = sys.stderr)
maxlayer=pargs.maxlayer
eVfreq = pargs.eVfreq
freq = eVfreq*eV/hbar
verbose=pargs.verbose
dy = pargs.dy
dx = pargs.dx
Ny = pargs.Ny
Nx = pargs.Nx
TMatrix_file = pargs.TMatrix
epsilon_b = pargs.background_permittivity #2.3104
#gaussianSigma = pargs.gaussian if pargs.gaussian else None # hexside * 222 / 7
interpfreqfactor = pargs.frequency_multiplier
scp_dest = pargs.scp_to if pargs.scp_to else None
kxdensity = pargs.kxdensity
kydensity = pargs.kydensity
chunklen = pargs.chunklen
ops = list()
opre = re.compile('(tr|sym|copy|multl|mult)(\d*)')
for oparg in pargs.ops:
opm = opre.match(oparg[0])
if opm:
ops.append(((opm.group(2),) if opm.group(2) else unitcell_indices, opm.group(1), oparg[1]))
else:
raise # should not happen
if(verbose):
print(ops, file = sys.stderr)
# -----------------finished basic CLI parsing (except for op arguments) ------------------
from qpms.timetrack import _time_b, _time_e
btime=_time_b(verbose)
import qpms
import numpy as np
import os, warnings, math
from scipy import interpolate
nx = None
s3 = math.sqrt(3)
# specifikace T-matice zde
refind = math.sqrt(epsilon_b)
cdn = c / refind
k_0 = freq * refind / c # = freq / cdn
TMatrices_orig, freqs_orig, freqs_weirdunits_orig, lMaxTM = qpms.loadScuffTMatrices(TMatrix_file)
lMax = lMaxTM
if pargs.lMax:
lMax = pargs.lMax if pargs.lMax else lMaxTM
my, ny = qpms.get_mn_y(lMax)
nelem = len(my)
if pargs.lMax: #force commandline specified lMax
TMatrices_orig = TMatrices_orig[...,0:nelem,:,0:nelem]
TMatrices = np.array(np.broadcast_to(TMatrices_orig[:,nx,:,:,:,:],(len(freqs_orig),unitcell_size,2,nelem,2,nelem)) )
xfl = qpms.xflip_tyty(lMax)
yfl = qpms.yflip_tyty(lMax)
zfl = qpms.zflip_tyty(lMax)
c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3),qpms.xflip_yy(3),-1)
reCN = re.compile('(\d*)C(\d+)')
#TODO C nekonečno
for op in ops:
if op[0] == 'all':
#targets = (0,1)
targets = unitcell_indices
elif isinstance(op[0],int):
targets = (op[0],)
else:
targets = op[0]
if op[1] == 'sym':
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
if op[2] == 'σ_z':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'σ_y':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'σ_x':
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1)))/2
elif op[2] == 'C2': # special case of the latter
for t in targets:
TMatrices[:,t] = (TMatrices[:,t] + qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1))/2
elif mCN:
rotN = int(mCN.group(2))
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
for t in targets:
for i in range(rotN):
rotangle = 2*np.pi*i / rotN
rot = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,rotangle]))
rotinv = qpms.WignerD_yy_fromvector(lMax,np.array([0,0,-rotangle]))
TMatrix_contribs[i] = qpms.apply_matrix_left(rot,qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
TMatrices[:,t] = np.sum(TMatrix_contribs, axis=0) / rotN
else:
raise
elif op[1] == 'tr':
mCN = reCN.match(op[2]) # Fuck van Rossum for not having assignments inside expressions
if op[2] == 'σ_z':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(zfl,qpms.apply_ndmatrix_left(zfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'σ_y':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(yfl,qpms.apply_ndmatrix_left(yfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'σ_x':
for t in targets:
TMatrices[:,t] = qpms.apply_ndmatrix_left(xfl,qpms.apply_ndmatrix_left(xfl, TMatrices[:,t], (-4,-3)),(-2,-1))
elif op[2] == 'C2':
for t in targets:
TMatrices[:,t] = qpms.apply_matrix_left(c2rot,qpms.apply_matrix_left(c2rot, TMatrices[:,t], -3),-1)
elif mCN:
rotN = int(mCN.group(2))
power = int(mCN.group(1)) if mCN.group(1) else 1
TMatrix_contribs = np.empty((rotN,TMatrices.shape[0],2,nelem,2,nelem), dtype=np.complex_)
for t in targets:
rotangle = 2*np.pi*power/rotN
rot = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,rotangle]))
rotinv = qpms.WignerD_yy_fromvector(lMax, np.array([0,0,-rotangle]))
TMatrices[:,t] = qpms.apply_matrix_left(rot, qpms.apply_matrix_left(rotinv, TMatrices[:,t], -3),-1)
else:
raise
elif op[1] == 'copy':
raise # not implemented
elif op[1] == 'mult':
raise # not implemented
elif op[1] == 'multl':
incy = np.full((nelem,), False, dtype=bool)
for incl in op[2][0].split(','):
l = int(incl)
incy += (l == ny)
scaty = np.full((nelem,), False, dtype=bool)
for scatl in op[2][1].split(','):
l = int(scatl)
scaty += (l == ny)
for t in targets:
TMatrices[np.ix_(np.arange(TMatrices.shape[0]),np.array([t]),np.array([0,1]),scaty,np.array([0,1]),incy)] *= float(op[2][2])
else:
raise #unknown operation; should not happen
TMatrices_interp = interpolate.interp1d(freqs_orig*interpfreqfactor, TMatrices, axis=0, kind='linear',fill_value="extrapolate")
xpositions = np.arange(Nx) * dx
ypositions = np.arange(Ny) * dy
if not pargs.nocentre:
xpositions -= Nx * dx / 2
ypositions -= Ny * dy / 2
xpositions, ypositions = np.meshgrid(xpositions, ypositions, indexing='ij', copy=False)
positions=np.stack((xpositions.ravel(),ypositions.ravel()), axis=-1)
positions=positions[np.random.permutation(len(positions))]
N = positions.shape[0]
kx = np.linspace(pargs.kxmin, pargs.kxmax, num=pargs.kxdensity, endpoint=True) * 2*np.pi / dx
ky = np.linspace(pargs.kymin, pargs.kymax, num=pargs.kydensity, endpoint=True) * 2*np.pi / dy
kx, ky = np.meshgrid(kx, ky, indexing='ij', copy=False)
kz = np.sqrt(k_0**2 - (kx ** 2 + ky ** 2))
klist_full = np.stack((kx,ky,kz), axis=-1).reshape((-1,3))
TMatrices_om = TMatrices_interp(freq)
chunkn = math.ceil(klist_full.size / 3 / chunklen)
if verbose:
print('Evaluating %d k-points' % klist_full.size + ('in %d chunks'%chunkn) if chunkn>1 else '' , file = sys.stderr)
sys.stderr.flush()
try:
version = qpms.__version__
except NameError:
version = None
metadata = np.array({
'script': os.path.basename(__file__),
'version': version,
'type' : 'Plane wave scattering on a finite rectangular lattice',
'lMax' : lMax,
'dx' : dx,
'dy' : dy,
'Nx' : Nx,
'Ny' : Ny,
#'maxlayer' : maxlayer,
#'gaussianSigma' : gaussianSigma,
'epsilon_b' : epsilon_b,
#'hexside' : hexside,
'chunkn' : chunkn,
'chunki' : 0,
'TMatrix_file' : TMatrix_file,
'ops' : ops,
'centred' : not pargs.nocentre
})
scat = qpms.Scattering_2D_zsym(positions, TMatrices_om, k_0, verbose=verbose)
if pargs.only_TE:
actions = (0,)
elif pargs.only_TM:
actions = (1,)
elif pargs.serial:
actions = (0,1)
else:
actions = (None,)
xu = np.array((1,0,0))
yu = np.array((0,1,0))
zu = np.array((0,0,1))
TEč, TMč = qpms.symz_indexarrays(lMax)
klist_full_2D = klist_full[...,:2]
klist_full_dir = klist_full/np.linalg.norm(klist_full, axis=-1, keepdims=True)
for action in actions:
if action is None:
scat.prepare(verbose=verbose)
actionstring = ''
else:
scat.prepare_partial(action, verbose=verbose)
actionstring = '.TM' if action else '.TE'
for chunki in range(chunkn):
sbtime = _time_b(verbose, step='Solving the scattering problem, chunk %d'%chunki+actionstring)
if pargs.nosuffix:
outfile = pargs.output_prefix + actionstring + (
('.%03d' % chunki) if chunkn > 1 else '')
else:
outfile = '%s_%dx%d_%.0fnmx%.0fnm_%.4f%s%s.npz' % (
pargs.output_prefix, Nx, Ny, dx/1e-9, dy/1e-9,
eVfreq, actionstring,
(".%03d" % chunki) if chunkn > 1 else '')
klist = klist_full[chunki * chunklen : (chunki + 1) * chunklen]
klist2d = klist_full_2D[chunki * chunklen : (chunki + 1) * chunklen]
klistdir = klist_full_dir[chunki * chunklen : (chunki + 1) * chunklen]
'''
The following loop is a fuckup that has its roots in the fact that
the function qpms.get_π̃τ̃_y1 in qpms_p.py is not vectorized
(and consequently, neither is plane_pq_y.)
And Scattering_2D_zsym.scatter_partial is not vectorized, either.
'''
if action == 0 or action is None:
xresult = np.full((klist.shape[0], N, nelem), np.nan, dtype=complex)
yresult = np.full((klist.shape[0], N, nelem), np.nan, dtype=complex)
if action == 1 or action is None:
zresult = np.full((klist.shape[0], N, nelem), np.nan, dtype=complex)
for i in range(klist.shape[0]):
if math.isnan(klist[i,2]):
if(verbose):
print("%d. momentum %s invalid (k_0=%f), skipping" % (i, str(klist[i]),k_0))
continue
kdir = klistdir[i]
phases = np.exp(-1j*np.sum(klist2d[i] * positions, axis=-1))
if action == 0 or action is None:
pq = np.array(qpms.plane_pq_y(lMax, kdir, xu)).ravel()[TEč] * phases[:, nx]
xresult[i] = scat.scatter_partial(0, pq)
pq = np.array(qpms.plane_pq_y(lMax, kdir, yu)).ravel()[TEč] * phases[:, nx]
yresult[i] = scat.scatter_partial(0, pq)
if action == 1 or action is None:
pq = np.array(qpms.plane_pq_y(lMax, kdir, zu)).ravel()[TMč] * phases[:, nx]
zresult[i] = scat.scatter_partial(1, pq)
_time_e(sbtime, verbose, step='Solving the scattering problem, chunk %d'%chunki+actionstring)
metadata[()]['chunki'] = chunki
if action is None:
np.savez(outfile, omega = freq, klist = klist,
metadata=metadata,
positions=positions,
ab_x=xresult,
ab_y=yresult,
ab_z=zresult
)
elif action == 0:
np.savez(outfile, omega = freq, klist = klist,
metadata=metadata,
positions=positions,
ab_x=xresult,
ab_y=yresult,
)
elif action == 1:
np.savez(outfile, omega = freq, klist = klist,
metadata=metadata,
positions=positions,
ab_z=zresult
)
else:
raise
if scp_dest:
if outfile:
subprocess.run(['scp', outfile, scp_dest])
scat.forget_matrices() # free memory in case --serial was used
_time_e(btime, verbose)