267 lines
11 KiB
Fortran
267 lines
11 KiB
Fortran
SUBROUTINE ZBESJ(ZR, ZI, FNU, KODE, N, CYR, CYI, NZ, IERR)
|
|
C***BEGIN PROLOGUE ZBESJ
|
|
C***DATE WRITTEN 830501 (YYMMDD)
|
|
C***REVISION DATE 890801 (YYMMDD)
|
|
C***CATEGORY NO. B5K
|
|
C***KEYWORDS J-BESSEL FUNCTION,BESSEL FUNCTION OF COMPLEX ARGUMENT,
|
|
C BESSEL FUNCTION OF FIRST KIND
|
|
C***AUTHOR AMOS, DONALD E., SANDIA NATIONAL LABORATORIES
|
|
C***PURPOSE TO COMPUTE THE J-BESSEL FUNCTION OF A COMPLEX ARGUMENT
|
|
C***DESCRIPTION
|
|
C
|
|
C ***A DOUBLE PRECISION ROUTINE***
|
|
C ON KODE=1, CBESJ COMPUTES AN N MEMBER SEQUENCE OF COMPLEX
|
|
C BESSEL FUNCTIONS CY(I)=J(FNU+I-1,Z) FOR REAL, NONNEGATIVE
|
|
C ORDERS FNU+I-1, I=1,...,N AND COMPLEX Z IN THE CUT PLANE
|
|
C -PI.LT.ARG(Z).LE.PI. ON KODE=2, CBESJ RETURNS THE SCALED
|
|
C FUNCTIONS
|
|
C
|
|
C CY(I)=EXP(-ABS(Y))*J(FNU+I-1,Z) I = 1,...,N , Y=AIMAG(Z)
|
|
C
|
|
C WHICH REMOVE THE EXPONENTIAL GROWTH IN BOTH THE UPPER AND
|
|
C LOWER HALF PLANES FOR Z TO INFINITY. DEFINITIONS AND NOTATION
|
|
C ARE FOUND IN THE NBS HANDBOOK OF MATHEMATICAL FUNCTIONS
|
|
C (REF. 1).
|
|
C
|
|
C INPUT ZR,ZI,FNU ARE DOUBLE PRECISION
|
|
C ZR,ZI - Z=CMPLX(ZR,ZI), -PI.LT.ARG(Z).LE.PI
|
|
C FNU - ORDER OF INITIAL J FUNCTION, FNU.GE.0.0D0
|
|
C KODE - A PARAMETER TO INDICATE THE SCALING OPTION
|
|
C KODE= 1 RETURNS
|
|
C CY(I)=J(FNU+I-1,Z), I=1,...,N
|
|
C = 2 RETURNS
|
|
C CY(I)=J(FNU+I-1,Z)EXP(-ABS(Y)), I=1,...,N
|
|
C N - NUMBER OF MEMBERS OF THE SEQUENCE, N.GE.1
|
|
C
|
|
C OUTPUT CYR,CYI ARE DOUBLE PRECISION
|
|
C CYR,CYI- DOUBLE PRECISION VECTORS WHOSE FIRST N COMPONENTS
|
|
C CONTAIN REAL AND IMAGINARY PARTS FOR THE SEQUENCE
|
|
C CY(I)=J(FNU+I-1,Z) OR
|
|
C CY(I)=J(FNU+I-1,Z)EXP(-ABS(Y)) I=1,...,N
|
|
C DEPENDING ON KODE, Y=AIMAG(Z).
|
|
C NZ - NUMBER OF COMPONENTS SET TO ZERO DUE TO UNDERFLOW,
|
|
C NZ= 0 , NORMAL RETURN
|
|
C NZ.GT.0 , LAST NZ COMPONENTS OF CY SET ZERO DUE
|
|
C TO UNDERFLOW, CY(I)=CMPLX(0.0D0,0.0D0),
|
|
C I = N-NZ+1,...,N
|
|
C IERR - ERROR FLAG
|
|
C IERR=0, NORMAL RETURN - COMPUTATION COMPLETED
|
|
C IERR=1, INPUT ERROR - NO COMPUTATION
|
|
C IERR=2, OVERFLOW - NO COMPUTATION, AIMAG(Z)
|
|
C TOO LARGE ON KODE=1
|
|
C IERR=3, CABS(Z) OR FNU+N-1 LARGE - COMPUTATION DONE
|
|
C BUT LOSSES OF SIGNIFCANCE BY ARGUMENT
|
|
C REDUCTION PRODUCE LESS THAN HALF OF MACHINE
|
|
C ACCURACY
|
|
C IERR=4, CABS(Z) OR FNU+N-1 TOO LARGE - NO COMPUTA-
|
|
C TION BECAUSE OF COMPLETE LOSSES OF SIGNIFI-
|
|
C CANCE BY ARGUMENT REDUCTION
|
|
C IERR=5, ERROR - NO COMPUTATION,
|
|
C ALGORITHM TERMINATION CONDITION NOT MET
|
|
C
|
|
C***LONG DESCRIPTION
|
|
C
|
|
C THE COMPUTATION IS CARRIED OUT BY THE FORMULA
|
|
C
|
|
C J(FNU,Z)=EXP( FNU*PI*I/2)*I(FNU,-I*Z) AIMAG(Z).GE.0.0
|
|
C
|
|
C J(FNU,Z)=EXP(-FNU*PI*I/2)*I(FNU, I*Z) AIMAG(Z).LT.0.0
|
|
C
|
|
C WHERE I**2 = -1 AND I(FNU,Z) IS THE I BESSEL FUNCTION.
|
|
C
|
|
C FOR NEGATIVE ORDERS,THE FORMULA
|
|
C
|
|
C J(-FNU,Z) = J(FNU,Z)*COS(PI*FNU) - Y(FNU,Z)*SIN(PI*FNU)
|
|
C
|
|
C CAN BE USED. HOWEVER,FOR LARGE ORDERS CLOSE TO INTEGERS, THE
|
|
C THE FUNCTION CHANGES RADICALLY. WHEN FNU IS A LARGE POSITIVE
|
|
C INTEGER,THE MAGNITUDE OF J(-FNU,Z)=J(FNU,Z)*COS(PI*FNU) IS A
|
|
C LARGE NEGATIVE POWER OF TEN. BUT WHEN FNU IS NOT AN INTEGER,
|
|
C Y(FNU,Z) DOMINATES IN MAGNITUDE WITH A LARGE POSITIVE POWER OF
|
|
C TEN AND THE MOST THAT THE SECOND TERM CAN BE REDUCED IS BY
|
|
C UNIT ROUNDOFF FROM THE COEFFICIENT. THUS, WIDE CHANGES CAN
|
|
C OCCUR WITHIN UNIT ROUNDOFF OF A LARGE INTEGER FOR FNU. HERE,
|
|
C LARGE MEANS FNU.GT.CABS(Z).
|
|
C
|
|
C IN MOST COMPLEX VARIABLE COMPUTATION, ONE MUST EVALUATE ELE-
|
|
C MENTARY FUNCTIONS. WHEN THE MAGNITUDE OF Z OR FNU+N-1 IS
|
|
C LARGE, LOSSES OF SIGNIFICANCE BY ARGUMENT REDUCTION OCCUR.
|
|
C CONSEQUENTLY, IF EITHER ONE EXCEEDS U1=SQRT(0.5/UR), THEN
|
|
C LOSSES EXCEEDING HALF PRECISION ARE LIKELY AND AN ERROR FLAG
|
|
C IERR=3 IS TRIGGERED WHERE UR=DMAX1(D1MACH(4),1.0D-18) IS
|
|
C DOUBLE PRECISION UNIT ROUNDOFF LIMITED TO 18 DIGITS PRECISION.
|
|
C IF EITHER IS LARGER THAN U2=0.5/UR, THEN ALL SIGNIFICANCE IS
|
|
C LOST AND IERR=4. IN ORDER TO USE THE INT FUNCTION, ARGUMENTS
|
|
C MUST BE FURTHER RESTRICTED NOT TO EXCEED THE LARGEST MACHINE
|
|
C INTEGER, U3=I1MACH(9). THUS, THE MAGNITUDE OF Z AND FNU+N-1 IS
|
|
C RESTRICTED BY MIN(U2,U3). ON 32 BIT MACHINES, U1,U2, AND U3
|
|
C ARE APPROXIMATELY 2.0E+3, 4.2E+6, 2.1E+9 IN SINGLE PRECISION
|
|
C ARITHMETIC AND 1.3E+8, 1.8E+16, 2.1E+9 IN DOUBLE PRECISION
|
|
C ARITHMETIC RESPECTIVELY. THIS MAKES U2 AND U3 LIMITING IN
|
|
C THEIR RESPECTIVE ARITHMETICS. THIS MEANS THAT ONE CAN EXPECT
|
|
C TO RETAIN, IN THE WORST CASES ON 32 BIT MACHINES, NO DIGITS
|
|
C IN SINGLE AND ONLY 7 DIGITS IN DOUBLE PRECISION ARITHMETIC.
|
|
C SIMILAR CONSIDERATIONS HOLD FOR OTHER MACHINES.
|
|
C
|
|
C THE APPROXIMATE RELATIVE ERROR IN THE MAGNITUDE OF A COMPLEX
|
|
C BESSEL FUNCTION CAN BE EXPRESSED BY P*10**S WHERE P=MAX(UNIT
|
|
C ROUNDOFF,1.0E-18) IS THE NOMINAL PRECISION AND 10**S REPRE-
|
|
C SENTS THE INCREASE IN ERROR DUE TO ARGUMENT REDUCTION IN THE
|
|
C ELEMENTARY FUNCTIONS. HERE, S=MAX(1,ABS(LOG10(CABS(Z))),
|
|
C ABS(LOG10(FNU))) APPROXIMATELY (I.E. S=MAX(1,ABS(EXPONENT OF
|
|
C CABS(Z),ABS(EXPONENT OF FNU)) ). HOWEVER, THE PHASE ANGLE MAY
|
|
C HAVE ONLY ABSOLUTE ACCURACY. THIS IS MOST LIKELY TO OCCUR WHEN
|
|
C ONE COMPONENT (IN ABSOLUTE VALUE) IS LARGER THAN THE OTHER BY
|
|
C SEVERAL ORDERS OF MAGNITUDE. IF ONE COMPONENT IS 10**K LARGER
|
|
C THAN THE OTHER, THEN ONE CAN EXPECT ONLY MAX(ABS(LOG10(P))-K,
|
|
C 0) SIGNIFICANT DIGITS; OR, STATED ANOTHER WAY, WHEN K EXCEEDS
|
|
C THE EXPONENT OF P, NO SIGNIFICANT DIGITS REMAIN IN THE SMALLER
|
|
C COMPONENT. HOWEVER, THE PHASE ANGLE RETAINS ABSOLUTE ACCURACY
|
|
C BECAUSE, IN COMPLEX ARITHMETIC WITH PRECISION P, THE SMALLER
|
|
C COMPONENT WILL NOT (AS A RULE) DECREASE BELOW P TIMES THE
|
|
C MAGNITUDE OF THE LARGER COMPONENT. IN THESE EXTREME CASES,
|
|
C THE PRINCIPAL PHASE ANGLE IS ON THE ORDER OF +P, -P, PI/2-P,
|
|
C OR -PI/2+P.
|
|
C
|
|
C***REFERENCES HANDBOOK OF MATHEMATICAL FUNCTIONS BY M. ABRAMOWITZ
|
|
C AND I. A. STEGUN, NBS AMS SERIES 55, U.S. DEPT. OF
|
|
C COMMERCE, 1955.
|
|
C
|
|
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
|
C BY D. E. AMOS, SAND83-0083, MAY, 1983.
|
|
C
|
|
C COMPUTATION OF BESSEL FUNCTIONS OF COMPLEX ARGUMENT
|
|
C AND LARGE ORDER BY D. E. AMOS, SAND83-0643, MAY, 1983
|
|
C
|
|
C A SUBROUTINE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
|
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, SAND85-
|
|
C 1018, MAY, 1985
|
|
C
|
|
C A PORTABLE PACKAGE FOR BESSEL FUNCTIONS OF A COMPLEX
|
|
C ARGUMENT AND NONNEGATIVE ORDER BY D. E. AMOS, TRANS.
|
|
C MATH. SOFTWARE, 1986
|
|
C
|
|
C***ROUTINES CALLED ZBINU,I1MACH,D1MACH
|
|
C***END PROLOGUE ZBESJ
|
|
C
|
|
C COMPLEX CI,CSGN,CY,Z,ZN
|
|
DOUBLE PRECISION AA, ALIM, ARG, CII, CSGNI, CSGNR, CYI, CYR, DIG,
|
|
* ELIM, FNU, FNUL, HPI, RL, R1M5, STR, TOL, ZI, ZNI, ZNR, ZR,
|
|
* D1MACH, BB, FN, AZ, ZABS, ASCLE, RTOL, ATOL, STI
|
|
INTEGER I, IERR, INU, INUH, IR, K, KODE, K1, K2, N, NL, NZ, I1MACH
|
|
DIMENSION CYR(N), CYI(N)
|
|
DATA HPI /1.57079632679489662D0/
|
|
C
|
|
C***FIRST EXECUTABLE STATEMENT ZBESJ
|
|
IERR = 0
|
|
NZ=0
|
|
IF (FNU.LT.0.0D0) IERR=1
|
|
IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
|
|
IF (N.LT.1) IERR=1
|
|
IF (IERR.NE.0) RETURN
|
|
C-----------------------------------------------------------------------
|
|
C SET PARAMETERS RELATED TO MACHINE CONSTANTS.
|
|
C TOL IS THE APPROXIMATE UNIT ROUNDOFF LIMITED TO 1.0E-18.
|
|
C ELIM IS THE APPROXIMATE EXPONENTIAL OVER- AND UNDERFLOW LIMIT.
|
|
C EXP(-ELIM).LT.EXP(-ALIM)=EXP(-ELIM)/TOL AND
|
|
C EXP(ELIM).GT.EXP(ALIM)=EXP(ELIM)*TOL ARE INTERVALS NEAR
|
|
C UNDERFLOW AND OVERFLOW LIMITS WHERE SCALED ARITHMETIC IS DONE.
|
|
C RL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC EXPANSION FOR LARGE Z.
|
|
C DIG = NUMBER OF BASE 10 DIGITS IN TOL = 10**(-DIG).
|
|
C FNUL IS THE LOWER BOUNDARY OF THE ASYMPTOTIC SERIES FOR LARGE FNU.
|
|
C-----------------------------------------------------------------------
|
|
TOL = DMAX1(D1MACH(4),1.0D-18)
|
|
K1 = I1MACH(15)
|
|
K2 = I1MACH(16)
|
|
R1M5 = D1MACH(5)
|
|
K = MIN0(IABS(K1),IABS(K2))
|
|
ELIM = 2.303D0*(DBLE(FLOAT(K))*R1M5-3.0D0)
|
|
K1 = I1MACH(14) - 1
|
|
AA = R1M5*DBLE(FLOAT(K1))
|
|
DIG = DMIN1(AA,18.0D0)
|
|
AA = AA*2.303D0
|
|
ALIM = ELIM + DMAX1(-AA,-41.45D0)
|
|
RL = 1.2D0*DIG + 3.0D0
|
|
FNUL = 10.0D0 + 6.0D0*(DIG-3.0D0)
|
|
C-----------------------------------------------------------------------
|
|
C TEST FOR PROPER RANGE
|
|
C-----------------------------------------------------------------------
|
|
AZ = ZABS(ZR,ZI)
|
|
FN = FNU+DBLE(FLOAT(N-1))
|
|
AA = 0.5D0/TOL
|
|
BB=DBLE(FLOAT(I1MACH(9)))*0.5D0
|
|
AA = DMIN1(AA,BB)
|
|
IF (AZ.GT.AA) GO TO 260
|
|
IF (FN.GT.AA) GO TO 260
|
|
AA = DSQRT(AA)
|
|
IF (AZ.GT.AA) IERR=3
|
|
IF (FN.GT.AA) IERR=3
|
|
C-----------------------------------------------------------------------
|
|
C CALCULATE CSGN=EXP(FNU*HPI*I) TO MINIMIZE LOSSES OF SIGNIFICANCE
|
|
C WHEN FNU IS LARGE
|
|
C-----------------------------------------------------------------------
|
|
CII = 1.0D0
|
|
INU = INT(SNGL(FNU))
|
|
INUH = INU/2
|
|
IR = INU - 2*INUH
|
|
ARG = (FNU-DBLE(FLOAT(INU-IR)))*HPI
|
|
CSGNR = DCOS(ARG)
|
|
CSGNI = DSIN(ARG)
|
|
IF (MOD(INUH,2).EQ.0) GO TO 40
|
|
CSGNR = -CSGNR
|
|
CSGNI = -CSGNI
|
|
40 CONTINUE
|
|
C-----------------------------------------------------------------------
|
|
C ZN IS IN THE RIGHT HALF PLANE
|
|
C-----------------------------------------------------------------------
|
|
ZNR = ZI
|
|
ZNI = -ZR
|
|
IF (ZI.GE.0.0D0) GO TO 50
|
|
ZNR = -ZNR
|
|
ZNI = -ZNI
|
|
CSGNI = -CSGNI
|
|
CII = -CII
|
|
50 CONTINUE
|
|
CALL ZBINU(ZNR, ZNI, FNU, KODE, N, CYR, CYI, NZ, RL, FNUL, TOL,
|
|
* ELIM, ALIM)
|
|
IF (NZ.LT.0) GO TO 130
|
|
NL = N - NZ
|
|
IF (NL.EQ.0) RETURN
|
|
RTOL = 1.0D0/TOL
|
|
ASCLE = D1MACH(1)*RTOL*1.0D+3
|
|
DO 60 I=1,NL
|
|
C STR = CYR(I)*CSGNR - CYI(I)*CSGNI
|
|
C CYI(I) = CYR(I)*CSGNI + CYI(I)*CSGNR
|
|
C CYR(I) = STR
|
|
AA = CYR(I)
|
|
BB = CYI(I)
|
|
ATOL = 1.0D0
|
|
IF (DMAX1(DABS(AA),DABS(BB)).GT.ASCLE) GO TO 55
|
|
AA = AA*RTOL
|
|
BB = BB*RTOL
|
|
ATOL = TOL
|
|
55 CONTINUE
|
|
STR = AA*CSGNR - BB*CSGNI
|
|
STI = AA*CSGNI + BB*CSGNR
|
|
CYR(I) = STR*ATOL
|
|
CYI(I) = STI*ATOL
|
|
STR = -CSGNI*CII
|
|
CSGNI = CSGNR*CII
|
|
CSGNR = STR
|
|
60 CONTINUE
|
|
RETURN
|
|
130 CONTINUE
|
|
IF(NZ.EQ.(-2)) GO TO 140
|
|
NZ = 0
|
|
IERR = 2
|
|
RETURN
|
|
140 CONTINUE
|
|
NZ=0
|
|
IERR=5
|
|
RETURN
|
|
260 CONTINUE
|
|
NZ=0
|
|
IERR=4
|
|
RETURN
|
|
END
|