qpms/apps/transop-ewald/transop_ewald.c

161 lines
5.5 KiB
C

// c99 -o ew_gen_kin -Wall -I ../.. -I ../../amos/ -O2 -ggdb -DQPMS_VECTORS_NICE_TRANSFORMATIONS -DLATTICESUMS32 2dlattice_ewald.c ../translations.c ../ewald.c ../ewaldsf.c ../gaunt.c ../lattices2d.c ../latticegens.c ../bessel.c -lgsl -lm -lblas ../../amos/libamos.a -lgfortran ../error.c
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "transop_ewald_cmdline.h"
#include <stdio.h>
#include <math.h>
#include <string.h>
#define LATTICESUMS32
#include <qpms/translations.h>
#include <qpms/lattices.h>
#include <gsl/gsl_const_mksa.h>
// Command line order:
// outfile b1.x b1.y b2.x b2.y lMax scuffomega refindex npart part0.x part0.y [part1.x part1.y [...]]
//
// Standard input (per line):
// k.x k.y
//
// Output data format (line):
//
#define MAXKCOUNT 200 // 200 // serves as klist default buffer size
//#define KMINCOEFF 0.783 //0.9783 // 0.783 // not used if KSTDIN defined
//#define KMAXCOEFF 1.217 //1.0217 // 1.217 // not used if KSTDIN defined
#define KLAYERS 20
#define RLAYERS 20
const double s3 = 1.732050807568877293527446341505872366942805253810380628055;
//const qpms_y_t lMax = 3;
//const double REFINDEX = 1.52;
static const double SCUFF_OMEGAUNIT = 3e14;
static const double hbar = GSL_CONST_MKSA_PLANCKS_CONSTANT_HBAR;
static const double eV = GSL_CONST_MKSA_ELECTRON_CHARGE;
static const double c0 = GSL_CONST_MKSA_SPEED_OF_LIGHT;
int main (int argc, char **argv) {
struct gengetopt_args_info args_info;
int retval = cmdline_parser(argc, argv, *argc_info);
if (retval) return retval;
char *outfile = argv[1];
char *errfile = NULL; // Filename for the error estimate output; NOT USED
cart2_t b1 = {strtod(argv[2], NULL), strtod(argv[3], NULL)},
b2 = {strtod(argv[4], NULL), strtod(argv[5], NULL)};
const qpms_l_t lMax = strtol(argv[6], NULL, 10); assert(lMax>0);
const double scuffomega = strtod(argv[7], NULL);
const double refindex = strtod(argv[8], NULL);
const int npart = strtol(argv[9], NULL, 10); assert(npart>0);
assert(argc >= 2*npart + 10);
assert(npart > 0);
cart2_t part_positions[npart];
for(int p = 0; p < npart; ++p) {
part_positions[p].x = strtod(argv[10+2*p], NULL);
part_positions[p].y = strtod(argv[10+2*p+1], NULL);
}
//#ifdef KSTDIN
size_t kcount = 0;
size_t klist_capacity = MAXKCOUNT;
cart2_t *klist = malloc(sizeof(cart2_t) * klist_capacity);
while (scanf("%lf %lf", &(klist[kcount].x), &(klist[kcount].y)) == 2) {
++kcount;
if(kcount >= klist_capacity) {
klist_capacity *= 2;
klist = realloc(klist, sizeof(cart2_t) * klist_capacity);
if (klist == NULL) abort();
}
}
//#else
#if 0
cart2_t klist[MAXKCOUNT];
int kcount = MAXKCOUNT;
for (int i = 0; i < kcount; ++i) { // TODO this should depend on orientation...
klist[i].x = 0;
klist[i].y = (4.* M_PI / 3. / LATTICE_A) * (KMINCOEFF + (KMAXCOEFF-KMINCOEFF)/kcount*i);
}
#endif
const double unitcell_area = l2d_unitcell_area(b1, b2);
l2d_reduceBasis(b1, b2, &b1, &b2);
// TODO more clever way of determining the cutoff
const double a = sqrt(unitcell_area); // N.B. different meaning than before
const double maxR = 25 * a;
const double maxK = 25 * 2*M_PI/a;
qpms_trans_calculator *c = qpms_trans_calculator_init(lMax, QPMS_NORMALISATION_POWER_CS); // vai POWER_CS?
FILE *out = fopen(outfile, "w");
FILE *err = NULL;
if (errfile)
err = fopen(errfile, "w");
{
const double omega = scuffomega * SCUFF_OMEGAUNIT;
const double EeV = omega * hbar / eV;
const double k0_vac = omega / c0;
const double k0_eff = k0_vac * refindex;
const double eta = 5.224/a; // FIXME quite arbitrary, but this one should work
// indices : destpart (A/B-particle), srcpart (A/B-particle), coeff type (A/B- type), desty, srcy
complex double W[npart][npart][2][c->nelem][c->nelem];
double Werr[npart][npart][npart][c->nelem][c->nelem];
for (size_t ki = 0; ki < kcount; ++ki) {
cart2_t beta = klist[ki];
memset(W, 0, sizeof(W));
if(err)
memset(Werr, 0, sizeof(Werr));
const ptrdiff_t deststride = &(W[0][0][0][1][0]) - &(W[0][0][0][0][0]);
const ptrdiff_t srcstride = &(W[0][0][0][0][1]) - &(W[0][0][0][0][0]);
assert (srcstride == 1 && deststride == c->nelem);
for (size_t ps = 0; ps < npart; ++ps) for (size_t pd = 0; pd < npart; ++pd)
// TODO optimize (calculate only once for each particle shift; especially if pd == ps)
qpms_trans_calculator_get_AB_arrays_e32(c,
&(W[pd][ps][0][0][0]), err ? &(Werr[pd][ps][0][0][0]) : NULL, // Adest, Aerr,
&(W[pd][ps][1][0][0]), err ? &(Werr[pd][ps][1][0][0]) : NULL, // Bdest, Berr,
deststride, srcstride,
eta, k0_eff, b1, b2,
beta,
cart2_substract(part_positions[pd], part_positions[ps]), // CHECKSIGN
maxR, maxK
);
// TODO CHECK B<-A vs. A<-B relation
fprintf(out, "%.16g\t%.16g\t%.16g\t%.16g\t%.16g\t",
scuffomega, EeV, k0_eff, beta.x, beta.y);
if(err) fprintf(err, "%.16g\t%.16g\t%16g\t%.16g\t%.16g\t",
scuffomega, EeV, k0_eff, beta.x, beta.y);
size_t totalelems = sizeof(W) / sizeof(complex double);
for (size_t i = 0; i < totalelems; ++i) {
complex double w = ((complex double *)W)[i];
fprintf(out, "%.16g\t%.16g\t", creal(w), cimag(w));
if (err)
fprintf(err, "%.3g\t", ((double *)Werr)[i]);
}
fputc('\n', out);
if(err) fputc('\n', err);
}
}
fclose(out);
if(err) fclose(err);
//#ifdef KSTDIN
free(klist);
//#endif
qpms_trans_calculator_free(c);
}