qpms/qpms/ewaldsf.c

294 lines
9.4 KiB
C

#include "ewald.h"
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_sf_expint.h>
#include <gsl/gsl_sf_exp.h>
#include <gsl/gsl_sf_result.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_machine.h> // Maybe I should rather use DBL_EPSILON instead of GSL_DBL_EPSILON.
#include "kahansum.h"
#include <math.h>
#include <complex.h>
//#include <gsl/gsl_integration.h>
#include <gsl/gsl_errno.h>
#include <float.h>
#include <stdbool.h>
#ifndef COMPLEXPART_REL_ZERO_LIMIT
#define COMPLEXPART_REL_ZERO_LIMIT 1e-14
#endif
gsl_error_handler_t IgnoreUnderflowsGSLErrorHandler;
void IgnoreUnderflowsGSLErrorHandler (const char * reason,
const char * file,
const int line,
const int gsl_errno) {
if (gsl_errno == GSL_EUNDRFLW)
return;
gsl_stream_printf ("ERROR", file, line, reason);
fflush(stdout);
fprintf (stderr, "Underflow-ignoring error handler invoked.\n");
fflush(stderr);
abort();
}
// DLMF 8.7.3 (latter expression) for complex second argument
// BTW if a is large negative, it might take a while to evaluate.
// This can't be used for non-positive integer a due to
// Г(a) in the formula.
int cx_gamma_inc_series_e(const double a, const complex double z, qpms_csf_result * result) {
if (a <= 0 && a == (int) a) {
result->val = NAN + NAN*I;
result->err = NAN;
GSL_ERROR("Undefined for non-positive integer values", GSL_EDOM);
}
gsl_sf_result fullgamma;
int retval = gsl_sf_gamma_e(a, &fullgamma);
if (GSL_EUNDRFLW == retval)
result->err += DBL_MIN;
else if (GSL_SUCCESS != retval){
result->val = NAN + NAN*I; result->err = NAN;
return retval;
}
complex double sumprefac = cpow(z, a) * cexp(-z);
double sumprefac_abs = cabs(sumprefac);
complex double sum, sumc; ckahaninit(&sum, &sumc);
double err, errc; kahaninit(&err, &errc);
bool breakswitch = false;
for (int k = 0; (!breakswitch) && (a + k + 1 <= GSL_SF_GAMMA_XMAX); ++k) {
gsl_sf_result fullgamma_ak;
if (GSL_SUCCESS != (retval = gsl_sf_gamma_e(a+k+1, &fullgamma_ak))) {
result->val = NAN + NAN*I; result->err = NAN;
return retval;
}
complex double summand = - cpow(z, k) / fullgamma_ak.val; // TODO test branch selection here with cimag(z) = -0.0
ckahanadd(&sum, &sumc, summand);
double summanderr = fabs(fullgamma_ak.err * cabs(summand / fullgamma_ak.val));
// TODO add also the rounding error
kahanadd(&err, &errc, summanderr);
// TODO put some smarter cutoff break here?
if (a + k >= 18 && (cabs(summand) < err || cabs(summand) < DBL_EPSILON))
breakswitch = true;
}
sum *= sumprefac; // Not sure if not breaking the Kahan summation here
sumc *= sumprefac;
err *= sumprefac_abs;
errc *= sumprefac_abs;
ckahanadd(&sum, &sumc, 1.);
kahanadd(&err, &errc, DBL_EPSILON);
result->err = cabs(sum) * fullgamma.err + err * fabs(fullgamma.val);
result->val = sum * fullgamma.val; // + sumc*fullgamma.val???
if (breakswitch)
return GSL_SUCCESS;
else GSL_ERROR("Overflow; the absolute value of the z argument is probably too large.", GSL_ETOL); // maybe different error code...
}
/* Continued fraction which occurs in evaluation
* of Q(a,z) or Gamma(a,z).
* Borrowed from GSL and adapted for complex z.
*
* 1 (1-a)/z 1/z (2-a)/z 2/z (3-a)/z
* F(a,z) = ---- ------- ----- -------- ----- -------- ...
* 1 + 1 + 1 + 1 + 1 + 1 +
*
*/
static int
cx_gamma_inc_F_CF(const double a, const complex double z, qpms_csf_result * result)
{
const int nmax = 5000;
const double small = DBL_EPSILON * DBL_EPSILON * DBL_EPSILON;
complex double hn = 1.0; /* convergent */
complex double Cn = 1.0 / small;
complex double Dn = 1.0;
int n;
/* n == 1 has a_1, b_1, b_0 independent of a,z,
so that has been done by hand */
for ( n = 2 ; n < nmax ; n++ )
{
complex double an;
complex double delta;
if(n % 2)
an = 0.5*(n-1)/z;
else
an = (0.5*n-a)/z;
Dn = 1.0 + an * Dn;
if ( cabs(Dn) < small )
Dn = small;
Cn = 1.0 + an/Cn;
if ( cabs(Cn) < small )
Cn = small;
Dn = 1.0 / Dn;
delta = Cn * Dn;
hn *= delta;
if(cabs(delta-1.0) < DBL_EPSILON) break;
}
result->val = hn;
result->err = 2.0*GSL_DBL_EPSILON * cabs(hn);
result->err += GSL_DBL_EPSILON * (2.0 + 0.5*n) * cabs(result->val);
if(n == nmax)
GSL_ERROR ("error in CF for F(a,x)", GSL_EMAXITER);
else
return GSL_SUCCESS;
}
// Incomplete gamma fuction with complex second argument as continued fraction.
int cx_gamma_inc_CF_e(const double a, const complex double z, qpms_csf_result *result)
{
qpms_csf_result F;
gsl_sf_result pre;
const complex double am1lgz = (a-1.0)*clog(z); // TODO check branches
const int stat_F = cx_gamma_inc_F_CF(a, z, &F);
const int stat_E = gsl_sf_exp_err_e(creal(am1lgz - z), GSL_DBL_EPSILON*cabs(am1lgz), &pre);
complex double cpre = pre.val * cexp(I*cimag(am1lgz - z));// TODO add the error estimate for this
//complex double cpre = cpow(z, a-1) * cexp(-z);
result->val = F.val * cpre;
result->err = fabs(F.err * pre.val) + fabs(F.val * pre.err);
result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
return GSL_ERROR_SELECT_2(stat_F, stat_E);
}
// Incomplete gamma function for complex second argument.
int complex_gamma_inc_e(double a, complex double x, int m, qpms_csf_result *result) {
int retval;
if (creal(x) >= 0 &&
(0 == fabs(cimag(x)) || // x is real positive; just use the real fun
fabs(cimag(x)) < fabs(creal(x)) * COMPLEXPART_REL_ZERO_LIMIT)) {
gsl_sf_result real_gamma_inc_result;
retval = gsl_sf_gamma_inc_e(a, creal(x), &real_gamma_inc_result);
result->val = real_gamma_inc_result.val;
result->err = real_gamma_inc_result.err;
} else if (creal(x) >= 0 && cabs(x) > 0.5)
retval = cx_gamma_inc_CF_e(a, x, result);
else if (QPMS_LIKELY(a > 0 || fmod(a, 1.0)))
retval = cx_gamma_inc_series_e(a, x, result);
else
/* FIXME cx_gamma_inc_series_e() probably fails for non-positive integer a.
* This does not matter for 2D lattices in 3D space,
* but it might cause problems in the other cases.
*/
QPMS_NOT_IMPLEMENTED("Incomplete Gamma function with non-positive integer a.");
if (m) { // Non-principal branch.
/* This might be sub-optimal, as Γ(a) has probably been already evaluated
* somewhere in the functions called above. */
gsl_sf_result fullgamma;
int retval_fg = gsl_sf_gamma_e(a, &fullgamma);
if (GSL_EUNDRFLW == retval_fg)
fullgamma.err += DBL_MIN;
else if (GSL_SUCCESS != retval_fg){
result->val = NAN + NAN*I; result->err = NAN;
return GSL_ERROR_SELECT_2(retval_fg, retval);
}
complex double f = cexp(2*m*M_PI*a*I);
result->val *= f;
f = -f + 1;
result->err += cabs(f) * fullgamma.err;
result->val += f * fullgamma.val;
}
return retval;
}
// Exponential integral for complex argument; !UNTESTED! and probably not needed, as I expressed everything in terms of inc. gammas anyways.
int complex_expint_n_e(int n, complex double x, qpms_csf_result *result) {
if (creal(x) >= 0 &&
(0 == fabs(cimag(x)) || // x is real positive; just use the real fun
fabs(cimag(x)) < fabs(creal(x)) * COMPLEXPART_REL_ZERO_LIMIT)) {
gsl_sf_result real_expint_result;
int retval = gsl_sf_expint_En_e(n, creal(x), &real_expint_result);
result->val = real_expint_result.val;
result->err = real_expint_result.err;
return retval;
} else {
int retval = complex_gamma_inc_e(-n+1, x, 0, result);
complex double f = cpow(x, 2*n-2);
result->val *= f;
result->err *= cabs(f);
return retval;
}
}
// inspired by GSL's hyperg_2F1_series
int hyperg_2F2_series(const double a, const double b, const double c, const double d,
const double x, gsl_sf_result *result
)
{
double sum_pos = 1.0;
double sum_neg = 0.0;
double del_pos = 1.0;
double del_neg = 0.0;
double del = 1.0;
double del_prev;
double k = 0.0;
int i = 0;
if(fabs(c) < GSL_DBL_EPSILON || fabs(d) < GSL_DBL_EPSILON) {
result->val = NAN;
result->err = INFINITY;
GSL_ERROR ("error", GSL_EDOM);
}
do {
if(++i > 30000) {
result->val = sum_pos - sum_neg;
result->err = del_pos + del_neg;
result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg);
result->err += 2.0 * GSL_DBL_EPSILON * (2.0*sqrt(k)+1.0) * fabs(result->val);
GSL_ERROR ("error", GSL_EMAXITER);
}
del_prev = del;
del *= (a+k)*(b+k) * x / ((c+k) * (d+k) * (k+1.0)); /* Gauss series */
if(del > 0.0) {
del_pos = del;
sum_pos += del;
}
else if(del == 0.0) {
/* Exact termination (a or b was a negative integer).
*/
del_pos = 0.0;
del_neg = 0.0;
break;
}
else {
del_neg = -del;
sum_neg -= del;
}
/*
* This stopping criteria is taken from the thesis
* "Computation of Hypergeometic Functions" by J. Pearson, pg. 31
* (http://people.maths.ox.ac.uk/porterm/research/pearson_final.pdf)
* and fixes bug #45926
*/
if (fabs(del_prev / (sum_pos - sum_neg)) < GSL_DBL_EPSILON &&
fabs(del / (sum_pos - sum_neg)) < GSL_DBL_EPSILON)
break;
k += 1.0;
} while(fabs((del_pos + del_neg)/(sum_pos-sum_neg)) > GSL_DBL_EPSILON);
result->val = sum_pos - sum_neg;
result->err = del_pos + del_neg;
result->err += 2.0 * GSL_DBL_EPSILON * (sum_pos + sum_neg);
result->err += 2.0 * GSL_DBL_EPSILON * (2.0*sqrt(k) + 1.0) * fabs(result->val);
return GSL_SUCCESS;
}