qpms/qpms/legendre.c

125 lines
4.3 KiB
C

#include "qpms_specfunc.h"
#include "qpms_types.h"
#include <gsl/gsl_sf_legendre.h>
#include <gsl/gsl_math.h>
#include <stdlib.h>
#include "indexing.h"
#include <string.h>
#include "qpms_error.h"
// Legendre functions also for negative m, see DLMF 14.9.3
qpms_errno_t qpms_legendre_deriv_y_fill(double *target, double *target_deriv, double x, qpms_l_t lMax,
gsl_sf_legendre_t lnorm, double csphase)
{
const size_t n = gsl_sf_legendre_array_n(lMax);
double *legendre_tmp, *legendre_deriv_tmp;
QPMS_CRASHING_MALLOC(legendre_tmp, n * sizeof(double));
QPMS_CRASHING_MALLOC(legendre_deriv_tmp, n * sizeof(double));
int gsl_errno = gsl_sf_legendre_deriv_array_e(
lnorm, (size_t)lMax, x, csphase, legendre_tmp,legendre_deriv_tmp);
for (qpms_l_t l = 1; l <= lMax; ++l)
for (qpms_m_t m = 0; m <= l; ++m) {
qpms_y_t y = qpms_mn2y(m,l);
size_t i = gsl_sf_legendre_array_index(l,m);
target[y] = legendre_tmp[i];
target_deriv[y] = legendre_deriv_tmp[i];
}
// Fill negative m's.
for (qpms_l_t l = 1; l <= lMax; ++l)
for (qpms_m_t m = 1; m <= l; ++m) {
qpms_y_t y = qpms_mn2y(-m,l);
size_t i = gsl_sf_legendre_array_index(l,m);
// cf. DLMF 14.9.3, but we're normalised.
double factor = ((m%2)?-1:1);
target[y] = factor * legendre_tmp[i];
target_deriv[y] = factor * legendre_deriv_tmp[i];
}
free(legendre_tmp);
free(legendre_deriv_tmp);
return gsl_errno;
}
qpms_errno_t qpms_legendre_deriv_y_get(double **target, double **dtarget, double x, qpms_l_t lMax, gsl_sf_legendre_t lnorm,
double csphase)
{
const qpms_y_t nelem = qpms_lMax2nelem(lMax);
QPMS_CRASHING_MALLOC(target, nelem * sizeof(double));
QPMS_CRASHING_MALLOC(dtarget, nelem * sizeof(double));
return qpms_legendre_deriv_y_fill(*target, *dtarget, x, lMax, lnorm, csphase);
}
qpms_pitau_t qpms_pitau_get(double theta, qpms_l_t lMax, const double csphase)
{
qpms_pitau_t res;
const qpms_y_t nelem = qpms_lMax2nelem(lMax);
QPMS_CRASHING_MALLOC(res.leg, nelem * sizeof(double));
QPMS_CRASHING_MALLOC(res.pi, nelem * sizeof(double));
QPMS_CRASHING_MALLOC(res.tau, nelem * sizeof(double));
qpms_pitau_fill(res.leg, res.pi, res.tau, theta, lMax, csphase);
return res;
}
qpms_errno_t qpms_pitau_fill(double *target_leg, double *pi, double *tau, double theta, qpms_l_t lMax, double csphase)
{
QPMS_ENSURE(fabs(csphase) == 1, "The csphase argument must be either 1 or -1, not %g.", csphase);
const qpms_y_t nelem = qpms_lMax2nelem(lMax);
double ct = cos(theta), st = sin(theta);
if (1 == fabs(ct)) { // singular case, use DLMF 14.8.2
if(pi) memset(pi, 0, nelem * sizeof(double));
if(tau) memset(tau, 0, nelem * sizeof(double));
if(target_leg) memset(target_leg, 0, nelem * sizeof(double));
for (qpms_l_t l = 1; l <= lMax; ++l) {
if(target_leg) target_leg[qpms_mn2y(0, l)] = ((l%2)?ct:1.)*sqrt((2*l+1)/(4*M_PI *l*(l+1)));
double fl = 0.25 * sqrt((2*l+1)*M_1_PI);
int lpar = (l%2)?-1:1;
if(pi) {
pi [qpms_mn2y(+1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
pi [qpms_mn2y(-1, l)] = -((ct>0) ? -1 : lpar) * fl * csphase;
}
if(tau) {
tau[qpms_mn2y(+1, l)] = ((ct>0) ? +1 : lpar) * fl * csphase;
tau[qpms_mn2y(-1, l)] = -((ct>0) ? +1 : lpar) * fl * csphase;
}
}
}
else { // cos(theta) in (-1,1), use normal calculation
double *leg, *legder;
if (target_leg)
leg = target_leg;
else
QPMS_CRASHING_MALLOC(leg, nelem*sizeof(double));
QPMS_CRASHING_MALLOC(legder, nelem * sizeof(double));
QPMS_ENSURE_SUCCESS(qpms_legendre_deriv_y_fill(leg, legder, ct, lMax,
GSL_SF_LEGENDRE_SPHARM, csphase));
// Multiply by the "power normalisation" factor
for (qpms_l_t l = 1; l <= lMax; ++l) {
double prefac = 1./sqrt(l*(l+1));
for (qpms_m_t m = -l; m <= l; ++m) {
leg[qpms_mn2y(m,l)] *= prefac;
legder[qpms_mn2y(m,l)] *= prefac;
}
}
for (qpms_l_t l = 1; l <= lMax; ++l) {
for (qpms_m_t m = -l; m <= l; ++m) {
if(pi) pi [qpms_mn2y(m,l)] = m / st * leg[qpms_mn2y(m,l)];
if(tau) tau[qpms_mn2y(m,l)] = - st * legder[qpms_mn2y(m,l)];
}
}
free(legder);
if(!target_leg)
free(leg);
}
return QPMS_SUCCESS;
}
void qpms_pitau_free(qpms_pitau_t x) {
free(x.leg);
free(x.pi);
free(x.tau);
}