267 lines
5.3 KiB
Plaintext
267 lines
5.3 KiB
Plaintext
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
|
\lyxformat 584
|
|
\begin_document
|
|
\begin_header
|
|
\save_transient_properties true
|
|
\origin unavailable
|
|
\textclass article
|
|
\use_default_options true
|
|
\maintain_unincluded_children false
|
|
\language finnish
|
|
\language_package default
|
|
\inputencoding utf8
|
|
\fontencoding auto
|
|
\font_roman "default" "default"
|
|
\font_sans "default" "default"
|
|
\font_typewriter "default" "default"
|
|
\font_math "auto" "auto"
|
|
\font_default_family default
|
|
\use_non_tex_fonts false
|
|
\font_sc false
|
|
\font_roman_osf false
|
|
\font_sans_osf false
|
|
\font_typewriter_osf false
|
|
\font_sf_scale 100 100
|
|
\font_tt_scale 100 100
|
|
\use_microtype false
|
|
\use_dash_ligatures true
|
|
\graphics default
|
|
\default_output_format default
|
|
\output_sync 0
|
|
\bibtex_command default
|
|
\index_command default
|
|
\paperfontsize default
|
|
\use_hyperref false
|
|
\papersize default
|
|
\use_geometry false
|
|
\use_package amsmath 1
|
|
\use_package amssymb 1
|
|
\use_package cancel 1
|
|
\use_package esint 1
|
|
\use_package mathdots 1
|
|
\use_package mathtools 1
|
|
\use_package mhchem 1
|
|
\use_package stackrel 1
|
|
\use_package stmaryrd 1
|
|
\use_package undertilde 1
|
|
\cite_engine basic
|
|
\cite_engine_type default
|
|
\use_bibtopic false
|
|
\use_indices false
|
|
\paperorientation portrait
|
|
\suppress_date false
|
|
\justification true
|
|
\use_refstyle 1
|
|
\use_minted 0
|
|
\use_lineno 0
|
|
\index Index
|
|
\shortcut idx
|
|
\color #008000
|
|
\end_index
|
|
\secnumdepth 3
|
|
\tocdepth 3
|
|
\paragraph_separation indent
|
|
\paragraph_indentation default
|
|
\is_math_indent 0
|
|
\math_numbering_side default
|
|
\quotes_style english
|
|
\dynamic_quotes 0
|
|
\papercolumns 1
|
|
\papersides 1
|
|
\paperpagestyle default
|
|
\tablestyle default
|
|
\tracking_changes false
|
|
\output_changes false
|
|
\html_math_output 0
|
|
\html_css_as_file 0
|
|
\html_be_strict false
|
|
\end_header
|
|
|
|
\begin_body
|
|
|
|
\begin_layout Standard
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\ud}{\mathrm{d}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset Formula
|
|
\begin{equation}
|
|
\Delta_{n}(x,z)\equiv\int_{x}^{\infty}t^{-\frac{1}{2}-n}e^{-t+\frac{z^{2}}{4t}}\ud t\label{eq:Delta definition}
|
|
\end{equation}
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Integration per partes:
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
\begin_inset Formula
|
|
\[
|
|
\int t^{-\frac{1}{2}-n}\ud t=\frac{t^{\frac{1}{2}-n}}{\frac{1}{2}-n};
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\begin_inset Formula
|
|
\[
|
|
\frac{\ud}{\ud t}e^{-t+\frac{z^{2}}{4t}}=\left(-1-\frac{z^{2}}{4t^{2}}\right)e^{-t+\frac{z^{2}}{4t}}
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
\begin_inset Formula
|
|
\begin{align*}
|
|
\left(\frac{1}{2}-n\right)\Delta_{n} & =-x^{\frac{1}{2}-n}e^{-x+\frac{z^{2}}{4x}}+\int_{x}^{\infty}t^{\frac{1}{2}-n}e^{-t+\frac{z^{2}}{4t}}\ud t+\frac{z^{2}}{4}\int_{x}^{\infty}t^{\frac{-3}{2}-n}e^{-t+\frac{z^{2}}{4t}}\ud t\\
|
|
& =-x^{\frac{1}{2}-n}e^{-x+\frac{z^{2}}{4x}}+\Delta_{n-1}+\frac{z^{2}}{4}\Delta_{n+1},
|
|
\end{align*}
|
|
|
|
\end_inset
|
|
|
|
|
|
\begin_inset Formula
|
|
\begin{equation}
|
|
\Delta_{n+1}=\frac{4}{z^{2}}\left(\left(\frac{1}{2}-n\right)\Delta_{n}-\Delta_{n-1}+x^{\frac{1}{2}-n}e^{-x+\frac{z^{2}}{4x}}\right).\label{eq:Delta recurrence}
|
|
\end{equation}
|
|
|
|
\end_inset
|
|
|
|
There are obviously wrong signs in Kambe II, (A 3.3).
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Eq.
|
|
|
|
\begin_inset CommandInset ref
|
|
LatexCommand eqref
|
|
reference "eq:Delta recurrence"
|
|
plural "false"
|
|
caps "false"
|
|
noprefix "false"
|
|
|
|
\end_inset
|
|
|
|
is obviously unsuitable for numerical computation when
|
|
\begin_inset Formula $z$
|
|
\end_inset
|
|
|
|
approaches 0.
|
|
However, the definition
|
|
\begin_inset CommandInset ref
|
|
LatexCommand eqref
|
|
reference "eq:Delta definition"
|
|
plural "false"
|
|
caps "false"
|
|
noprefix "false"
|
|
|
|
\end_inset
|
|
|
|
suggests that the function should be analytical around
|
|
\begin_inset Formula $z=0$
|
|
\end_inset
|
|
|
|
.
|
|
If
|
|
\begin_inset Formula $z=0$
|
|
\end_inset
|
|
|
|
, one has (by definition of incomplete Г function)
|
|
\begin_inset Formula
|
|
\begin{equation}
|
|
\Delta_{n}(x,0)=\Gamma\left(\frac{1}{2}-n,x\right).\label{eq:Delta:z = 0}
|
|
\end{equation}
|
|
|
|
\end_inset
|
|
|
|
For convenience, label
|
|
\begin_inset Formula $w=z^{2}/4$
|
|
\end_inset
|
|
|
|
and
|
|
\begin_inset Formula
|
|
\[
|
|
\Delta'_{n}\left(x,w\right)\equiv\int_{x}^{\infty}t^{-\frac{1}{2}-n}e^{-t+\frac{w}{t}}\ud t.
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
Differentiating by parameter
|
|
\begin_inset Formula $w$
|
|
\end_inset
|
|
|
|
(which should be fine as long as the integration contour does not go through
|
|
zero) gives
|
|
\begin_inset Formula
|
|
\[
|
|
\frac{\partial\Delta'_{n}\left(x,w\right)}{\partial w}=\Delta'_{n+1}\left(x,w\right),
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
so by recurrence
|
|
\begin_inset Formula
|
|
\[
|
|
\frac{\partial^{k}}{\partial w^{k}}\Delta'_{n}\left(x,w\right)=\Delta'_{n+k}\left(x,w\right).
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
Together with
|
|
\begin_inset CommandInset ref
|
|
LatexCommand eqref
|
|
reference "eq:Delta:z = 0"
|
|
plural "false"
|
|
caps "false"
|
|
noprefix "false"
|
|
|
|
\end_inset
|
|
|
|
, this gives an expansion around
|
|
\begin_inset Formula $w=0$
|
|
\end_inset
|
|
|
|
:
|
|
\begin_inset Formula
|
|
\[
|
|
\Delta_{n}'\left(x,w\right)=\sum_{k=0}^{\infty}\Gamma\left(\frac{1}{2}-n-k,x\right)\frac{w^{k}}{k!},
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\begin_inset Formula
|
|
\[
|
|
\Delta_{n}\left(x,z\right)=\sum_{k=0}^{\infty}\Gamma\left(\frac{1}{2}-n-k,x\right)\frac{\left(z/2\right)^{2k}}{k!}.
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
The big negative first arguments in incomplete
|
|
\begin_inset Formula $\Gamma$
|
|
\end_inset
|
|
|
|
functions should be good (at least I think so, CHECKME), as well as the
|
|
|
|
\begin_inset Formula $1/k!$
|
|
\end_inset
|
|
|
|
factor (of course).
|
|
I am not sure what the convergence radius is, but for
|
|
\begin_inset Formula $\left|z\right|<2$
|
|
\end_inset
|
|
|
|
there seems to be absolutely no problem in using this formula.
|
|
\end_layout
|
|
|
|
\end_body
|
|
\end_document
|