qpms/misc/finiterectlat-scatter.py

238 lines
10 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
import math
pi = math.pi
from qpms.argproc import ArgParser
ap = ArgParser(['rectlattice2d_finite', 'single_particle', 'single_lMax', 'omega_seq_real_ng', 'planewave'])
ap.add_argument("-o", "--output", type=str, required=False, help='output path (if not provided, will be generated automatically)')
ap.add_argument("-O", "--plot-out", type=str, required=False, help="path to plot output (optional)")
ap.add_argument("-P", "--plot", action='store_true', help="if -p not given, plot to a default path")
ap.add_argument("-g", "--save-gradually", action='store_true', help="saves the partial result after computing each irrep")
a=ap.parse_args()
import logging
logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO)
import numpy as np
import qpms
from qpms.qpms_p import cart2sph, sph2cart, sph_loccart2cart, sph_loccart_basis
from qpms.cybspec import BaseSpec
from qpms.cytmatrices import CTMatrix, TMatrixGenerator
from qpms.qpms_c import Particle
from qpms.cymaterials import EpsMu, EpsMuGenerator, LorentzDrudeModel, lorentz_drude
from qpms.cycommon import DebugFlags, dbgmsg_enable
from qpms import FinitePointGroup, ScatteringSystem, BesselType, eV, hbar
from qpms.symmetries import point_group_info
eh = eV/hbar
dbgmsg_enable(DebugFlags.INTEGRATION)
Nx, Ny = a.size
px, py = a.period
particlestr = ("sph" if a.height is None else "cyl") + ("_r%gnm" % (a.radius*1e9))
if a.height is not None: particlestr += "_h%gnm" % (a.height * 1e9)
defaultprefix = "%s_p%gnmx%gnm_%dx%d_m%s_bg%s%gπ_θ(%g_%g)π_ψ%gπ_χ%gπ_f%s_L%d" % (
particlestr, px*1e9, py*1e9, Nx, Ny, str(a.material), str(a.background), a.phi/pi, np.amin(a.theta)/pi, np.amax(a.theta)/pi, a.psi/pi, a.chi/pi, ap.omega_descr, a.lMax, )
logging.info("Default file prefix: %s" % defaultprefix)
#Particle positions
orig_x = (np.arange(Nx/2) + (0 if (Nx % 2) else .5)) * px
orig_y = (np.arange(Ny/2) + (0 if (Ny % 2) else .5)) * py
orig_xy = np.stack(np.meshgrid(orig_x, orig_y), axis = -1)
bspec = BaseSpec(lMax = a.lMax)
particles= [Particle(orig_xy[i], ap.tmgen, bspec=bspec) for i in np.ndindex(orig_xy.shape[:-1])]
sym = FinitePointGroup(point_group_info['D2h'])
ss, ssw = ScatteringSystem.create(particles, ap.background_emg, ap.allomegas[0], sym=sym)
## Plane wave data
a.theta = np.atleast_1d(np.array(a.theta))
dir_sph_list = np.stack((np.broadcast_to(1, a.theta.shape), a.theta, np.broadcast_to(a.phi, a.theta.shape)), axis=-1)
, = math.sin(a.psi), math.cos(a.psi)
, = math.sin(a.chi), math.cos(a.chi)
E_sph = (0., * + 1j**, * + 1j**)
dir_cart_list = sph2cart(dir_sph_list)
E_cart_list = sph_loccart2cart(E_sph, dir_sph_list)
nfreq = len(ap.allomegas)
ndir = a.theta.shape[0]
k_cart_arr = np.empty((nfreq, ndir, 3), dtype=float)
wavenumbers = np.empty((nfreq,), dtype=float)
σ_ext_arr_ir = np.empty((nfreq, ndir, ss.nirreps), dtype=float)
σ_scat_arr_ir = np.empty((nfreq, ndir, ss.nirreps), dtype=float)
outfile_tmp = defaultprefix + ".tmp" if a.output is None else a.output + ".tmp"
for i, omega in enumerate(ap.allomegas):
logging.info("Processing frequency %g eV" % (omega / eV,))
if i != 0:
ssw = ss(omega)
if ssw.wavenumber.imag != 0:
warnings.warn("The background medium wavenumber has non-zero imaginary part. Don't expect emaningful results for cross sections.")
wavenumber = ssw.wavenumber.real
wavenumbers[i] = wavenumber
k_sph_list = np.array(dir_sph_list, copy=True)
k_sph_list[:,0] = wavenumber
k_cart_arr[i] = sph2cart(k_sph_list)
for iri in range(ss.nirreps):
logging.info("processing irrep %d/%d" % (iri, ss.nirreps))
LU = None # to trigger garbage collection before the next call
translation_matrix = None
LU = ssw.scatter_solver(iri)
logging.info("LU solver created")
translation_matrix = ssw.translation_matrix_packed(iri, BesselType.REGULAR) + np.eye(ss.saecv_sizes[iri])
logging.info("auxillary translation matrix created")
for j in range(ndir):
k_cart = k_cart_arr[i,j]
# the following two could be calculated only once, but probably not a big deal
ã = ss.planewave_full(k_cart=k_cart_arr[i,j], E_cart=E_cart_list[j])
= ssw.apply_Tmatrices_full(ã)
Tãi = ss.pack_vector(, iri)
ãi = ss.pack_vector(ã, iri)
fi = LU(Tãi)
σ_ext_arr_ir[i, j, iri] = -np.vdot(ãi, fi).real/wavenumber**2
σ_scat_arr_ir[i, j, iri] = np.vdot(fi,np.dot(translation_matrix, fi)).real/wavenumber**2
if a.save_gradually:
iriout = outfile_tmp + ".%d.%d" % (i, iri)
np.savez(iriout, omegai=i, iri=iri, meta=vars(a), omega=omega, k_sph=k_sph_list, k_cart = k_cart_arr, E_cart=E_cart_list, E_sph=np.array(E_sph),
wavenumber=wavenumber, σ_ext_list_ir=σ_ext_arr_ir[i,:,iri], σ_scat_list_ir=σ_scat_list_ir[i,:,iri])
logging.info("partial results saved to %s"%iriout)
σ_abs_arr_ir = σ_ext_arr_ir - σ_scat_arr_ir
σ_abs_arr = np.sum(σ_abs_arr_ir, axis=-1)
σ_scat_arr = np.sum(σ_scat_arr_ir, axis=-1)
σ_ext_arr = np.sum(σ_ext_arr_ir, axis=-1)
outfile = defaultprefix + ".npz" if a.output is None else a.output
np.savez(outfile, meta=vars(a), k_sph=k_sph_list, k_cart = k_cart_arr, E_cart=E_cart_list, E_sph=np.array(E_sph),
σ_ext=σ_ext_arr,σ_abs=σ_abs_arr,σ_scat=σ_scat_arr,
σ_ext_ir=σ_ext_arr_ir,σ_abs_ir=σ_abs_arr_ir,σ_scat_ir=σ_scat_arr_ir, omega=ap.allomegas, wavenumbers=wavenumbers
)
logging.info("Saved to %s" % outfile)
if a.plot or (a.plot_out is not None):
import matplotlib
from matplotlib.backends.backend_pdf import PdfPages
matplotlib.use('pdf')
from matplotlib import pyplot as plt
from scipy.interpolate import griddata
plotfile = defaultprefix + ".pdf" if a.plot_out is None else a.plot_out
with PdfPages(plotfile) as pdf:
ipm = 'nearest'
sintheta = np.sin(a.theta)
if False: #len(ap.omega_ranges) != 0:
# angle plot ---------------------------------
fig = plt.figure(figsize=(210/25.4, 297/25.4))
vmax = max(np.amax(σ_ext_arr), np.amax(σ_scat_arr), np.amax(σ_abs_arr))
vmin = min(np.amin(σ_ext_arr), np.amin(σ_scat_arr), np.amin(σ_abs_arr))
ax = fig.add_subplot(311)
ax.pcolormesh(a.theta, ap.allomegas/eh, σ_ext_arr, vmin=vmin, vmax=vmax)
ax.set_xlabel('$\\theta$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{ext}$')
ax = fig.add_subplot(312)
ax.pcolormesh(a.theta, ap.allomegas/eh, σ_scat_arr, vmin=vmin, vmax=vmax)
ax.set_xlabel('$\\theta$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{scat}$')
ax = fig.add_subplot(313)
im = ax.pcolormesh(a.theta, ap.allomegas/eh, σ_abs_arr, vmin=vmin, vmax=vmax)
ax.set_xlabel('$\\theta$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{abs}$')
fig.subplots_adjust(right=0.8)
fig.colorbar(im, cax = fig.add_axes([0.85, 0.15, 0.05, 0.7]))
pdf.savefig(fig)
plt.close(fig)
if len(ap.omega_ranges) != 0:
# "k-space" plot -----------------------------
domega = np.amin(np.diff(ap.allomegas))
dsintheta = np.amin(abs(np.diff(sintheta)))
dk = dsintheta * wavenumbers[0]
# target image grid
grid_y, grid_x = np.mgrid[ap.allomegas[0] : ap.allomegas[-1] : domega, np.amin(sintheta) * wavenumbers[-1] : np.amax(sintheta) * wavenumbers[-1] : dk]
imextent = (np.amin(sintheta) * wavenumbers[-1] / 1e6, np.amax(sintheta) * wavenumbers[-1] / 1e6, ap.allomegas[0] / eh, ap.allomegas[-1] / eh)
# source coordinates for griddata
ktheta = sintheta[None, :] * wavenumbers[:, None]
omegapoints = np.broadcast_to(ap.allomegas[:, None], ktheta.shape)
points = np.stack( (ktheta.flatten(), omegapoints.flatten()), axis = -1)
fig = plt.figure(figsize=(210/25.4, 297/25.4))
vmax = np.amax(σ_ext_arr)
ax = fig.add_subplot(311)
grid_z = griddata(points, σ_ext_arr.flatten(), (grid_x, grid_y), method = ipm)
ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none')
ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{ext}$')
ax = fig.add_subplot(312)
grid_z = griddata(points, σ_scat_arr.flatten(), (grid_x, grid_y), method = ipm)
ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none')
ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{scat}$')
ax = fig.add_subplot(313)
grid_z = griddata(points, σ_abs_arr.flatten(), (grid_x, grid_y), method = ipm)
im = ax.imshow(grid_z, extent = imextent, origin = 'lower', vmin = 0, vmax = vmax, aspect = 'auto', interpolation='none')
ax.set_xlabel('$k_\\theta / \\mathrm{\\mu m^{-1}}$')
ax.set_ylabel('$\\hbar\\omega / \\mathrm{eV}$')
ax.set_title('$\\sigma_\\mathrm{abs}$')
fig.subplots_adjust(right=0.8)
fig.colorbar(im, cax = fig.add_axes([0.85, 0.15, 0.05, 0.7]))
pdf.savefig(fig)
plt.close(fig)
for omega in ap.omega_singles:
i = np.searchsorted(ap.allomegas, omega)
fig = plt.figure()
fig.suptitle("%g eV" % (omega / eh))
ax = fig.add_subplot(111)
sintheta = np.sin(a.theta)
ax.plot(sintheta, σ_ext_arr[i]*1e12,label='$\sigma_\mathrm{ext}$')
ax.plot(sintheta, σ_scat_arr[i]*1e12, label='$\sigma_\mathrm{scat}$')
ax.plot(sintheta, σ_abs_arr[i]*1e12, label='$\sigma_\mathrm{abs}$')
ax.legend()
ax.set_xlabel('$\sin\\theta$')
ax.set_ylabel('$\sigma/\mathrm{\mu m^2}$')
pdf.savefig(fig)
plt.close(fig)
exit(0)