306 lines
8.0 KiB
Plaintext
306 lines
8.0 KiB
Plaintext
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
|
\lyxformat 584
|
|
\begin_document
|
|
\begin_header
|
|
\save_transient_properties true
|
|
\origin unavailable
|
|
\textclass article
|
|
\use_default_options true
|
|
\maintain_unincluded_children false
|
|
\language finnish
|
|
\language_package default
|
|
\inputencoding utf8
|
|
\fontencoding auto
|
|
\font_roman "default" "default"
|
|
\font_sans "default" "default"
|
|
\font_typewriter "default" "default"
|
|
\font_math "auto" "auto"
|
|
\font_default_family default
|
|
\use_non_tex_fonts false
|
|
\font_sc false
|
|
\font_roman_osf false
|
|
\font_sans_osf false
|
|
\font_typewriter_osf false
|
|
\font_sf_scale 100 100
|
|
\font_tt_scale 100 100
|
|
\use_microtype false
|
|
\use_dash_ligatures true
|
|
\graphics default
|
|
\default_output_format default
|
|
\output_sync 0
|
|
\bibtex_command default
|
|
\index_command default
|
|
\paperfontsize default
|
|
\use_hyperref false
|
|
\papersize default
|
|
\use_geometry false
|
|
\use_package amsmath 1
|
|
\use_package amssymb 1
|
|
\use_package cancel 1
|
|
\use_package esint 1
|
|
\use_package mathdots 1
|
|
\use_package mathtools 1
|
|
\use_package mhchem 1
|
|
\use_package stackrel 1
|
|
\use_package stmaryrd 1
|
|
\use_package undertilde 1
|
|
\cite_engine basic
|
|
\cite_engine_type default
|
|
\use_bibtopic false
|
|
\use_indices false
|
|
\paperorientation portrait
|
|
\suppress_date false
|
|
\justification true
|
|
\use_refstyle 1
|
|
\use_minted 0
|
|
\use_lineno 0
|
|
\index Index
|
|
\shortcut idx
|
|
\color #008000
|
|
\end_index
|
|
\secnumdepth 3
|
|
\tocdepth 3
|
|
\paragraph_separation indent
|
|
\paragraph_indentation default
|
|
\is_math_indent 0
|
|
\math_numbering_side default
|
|
\quotes_style english
|
|
\dynamic_quotes 0
|
|
\papercolumns 1
|
|
\papersides 1
|
|
\paperpagestyle default
|
|
\tablestyle default
|
|
\tracking_changes false
|
|
\output_changes false
|
|
\html_math_output 0
|
|
\html_css_as_file 0
|
|
\html_be_strict false
|
|
\end_header
|
|
|
|
\begin_body
|
|
|
|
\begin_layout Standard
|
|
|
|
\lang english
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\uoft}[1]{\mathfrak{F}#1}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\sgn}{\operatorname{sgn}}
|
|
{\mathrm{sgn}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\vect}[1]{\mathbf{#1}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\ud}{\mathrm{d}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\basis}[1]{\mathfrak{#1}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\dc}[1]{Ш_{#1}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\rec}[1]{#1^{-1}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\recb}[1]{#1^{\widehat{-1}}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\ints}{\mathbb{Z}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\nats}{\mathbb{N}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\reals}{\mathbb{R}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\ush}[2]{Y_{#1,#2}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\hgfr}{\mathbf{F}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\hgf}{F}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\ghgf}[2]{\mbox{}_{#1}F_{#2}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\ghgfr}[2]{\mbox{}_{#1}\mathbf{F}_{#2}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\ph}{\mathrm{ph}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\kor}[1]{\underline{#1}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\koru}[1]{\utilde{#1}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\swv}{\mathscr{H}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\expint}{\mathrm{E}}
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
|
|
\lang english
|
|
\begin_inset Formula
|
|
\begin{eqnarray}
|
|
\sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}\times\nonumber \\
|
|
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}e^{im\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\nonumber \\
|
|
& = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
|
|
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\nonumber \\
|
|
& = & -\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\nonumber \\
|
|
& & \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j-1}\label{eq:2D Ewald in 3D long-range part}
|
|
\end{eqnarray}
|
|
|
|
\end_inset
|
|
|
|
For
|
|
\begin_inset Formula $z\ne0$
|
|
\end_inset
|
|
|
|
|
|
\begin_inset Formula
|
|
\begin{align*}
|
|
& =-\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\\
|
|
& \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{n-\left|m\right|}\frac{\Delta_{npq}}{j!}\left(-1\right)^{j}\left(\gamma_{pq}\right)^{2j-1}\sum_{s\overset{*}{=}j}^{\min(2j,n-\left|m\right|)}\binom{j}{2j-s}\frac{\left(-\kappa z\right)^{2j-s}\left(\beta_{pq}/k\right)^{n-s}}{\left(\frac{1}{2}\left(n-m-s\right)\right)!\left(\frac{1}{2}\left(n+m-s\right)\right)!}\\
|
|
& =-\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\\
|
|
& \times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{n-\left|m\right|}\Delta_{npq}\left(\gamma_{pq}\right)^{2j-1}\sum_{s\overset{*}{=}j}^{\min(2j,n-\left|m\right|)}\frac{\left(-1\right)^{j}}{\left(2j-s\right)!\left(s-j\right)!}\frac{\left(-\kappa z\right)^{2j-s}\left(\beta_{pq}/k\right)^{n-s}}{\left(\frac{1}{2}\left(n-m-s\right)\right)!\left(\frac{1}{2}\left(n+m-s\right)\right)!}
|
|
\end{align*}
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Section
|
|
|
|
\lang english
|
|
Ewald long range integral
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
|
|
\lang english
|
|
Linton has (2.24):
|
|
\begin_inset Formula
|
|
\[
|
|
G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{2\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta}^{\infty\exp\left(i\pi/4\right)}e^{-\kappa^{2}\gamma_{m}^{2}\zeta^{2}/4}e^{-\left|\vect r_{\bot}\right|^{2}/\zeta^{2}}\zeta^{1-d_{c}}\ud\zeta
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
Try substitution
|
|
\begin_inset Formula $t=\zeta^{2}$
|
|
\end_inset
|
|
|
|
: then
|
|
\begin_inset Formula $\ud t=2\zeta\,\ud\zeta$
|
|
\end_inset
|
|
|
|
(
|
|
\begin_inset Formula $\ud\zeta=\ud t/2t^{1/2}$
|
|
\end_inset
|
|
|
|
) and
|
|
\begin_inset Formula
|
|
\[
|
|
G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\int_{1/\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\kappa^{2}\gamma_{m}^{2}t/4}e^{-\left|\vect r_{\bot}\right|^{2}/t}t^{\frac{-d_{c}}{2}}\ud t
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
Try subst.
|
|
|
|
\begin_inset Formula $\tau=k^{2}\gamma_{m}^{2}/4$
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
|
|
\lang english
|
|
\begin_inset Formula
|
|
\[
|
|
G_{\Lambda}^{\left(1\right)}\left(\vect r\right)=\frac{\pi^{-d_{c}/2}}{4\mathcal{A}}\sum_{\vect K_{m}\in\Lambda^{*}}e^{i\vect K_{m}\cdot\vect r}\left(\frac{\kappa\gamma_{m}}{2}\right)^{d_{c}}\int_{\kappa^{2}\gamma_{m}^{2}/4\eta^{2}}^{\infty\exp\left(i\pi/2\right)}e^{-\tau}e^{-\left|\vect r_{\bot}\right|^{2}\kappa^{2}\gamma_{m}^{2}/4\tau}\tau^{\frac{-d_{c}}{2}}\ud\tau
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\end_body
|
|
\end_document
|