751 lines
14 KiB
Plaintext
751 lines
14 KiB
Plaintext
#LyX 2.1 created this file. For more info see http://www.lyx.org/
|
||
\lyxformat 474
|
||
\begin_document
|
||
\begin_header
|
||
\textclass article
|
||
\use_default_options true
|
||
\begin_modules
|
||
theorems-ams
|
||
\end_modules
|
||
\maintain_unincluded_children false
|
||
\language english
|
||
\language_package default
|
||
\inputencoding auto
|
||
\fontencoding global
|
||
\font_roman TeX Gyre Pagella
|
||
\font_sans default
|
||
\font_typewriter default
|
||
\font_math auto
|
||
\font_default_family default
|
||
\use_non_tex_fonts true
|
||
\font_sc false
|
||
\font_osf true
|
||
\font_sf_scale 100
|
||
\font_tt_scale 100
|
||
\graphics default
|
||
\default_output_format pdf4
|
||
\output_sync 0
|
||
\bibtex_command default
|
||
\index_command default
|
||
\paperfontsize 10
|
||
\spacing single
|
||
\use_hyperref true
|
||
\pdf_title "Sähköpajan päiväkirja"
|
||
\pdf_author "Marek Nečada"
|
||
\pdf_bookmarks true
|
||
\pdf_bookmarksnumbered false
|
||
\pdf_bookmarksopen false
|
||
\pdf_bookmarksopenlevel 1
|
||
\pdf_breaklinks false
|
||
\pdf_pdfborder false
|
||
\pdf_colorlinks false
|
||
\pdf_backref false
|
||
\pdf_pdfusetitle true
|
||
\papersize a4paper
|
||
\use_geometry true
|
||
\use_package amsmath 1
|
||
\use_package amssymb 1
|
||
\use_package cancel 1
|
||
\use_package esint 1
|
||
\use_package mathdots 1
|
||
\use_package mathtools 1
|
||
\use_package mhchem 1
|
||
\use_package stackrel 1
|
||
\use_package stmaryrd 1
|
||
\use_package undertilde 1
|
||
\cite_engine basic
|
||
\cite_engine_type default
|
||
\biblio_style plain
|
||
\use_bibtopic false
|
||
\use_indices false
|
||
\paperorientation portrait
|
||
\suppress_date false
|
||
\justification true
|
||
\use_refstyle 1
|
||
\index Index
|
||
\shortcut idx
|
||
\color #008000
|
||
\end_index
|
||
\leftmargin 1cm
|
||
\topmargin 5mm
|
||
\rightmargin 1cm
|
||
\bottommargin 1cm
|
||
\secnumdepth 3
|
||
\tocdepth 3
|
||
\paragraph_separation indent
|
||
\paragraph_indentation default
|
||
\quotes_language english
|
||
\papercolumns 1
|
||
\papersides 1
|
||
\paperpagestyle default
|
||
\tracking_changes false
|
||
\output_changes false
|
||
\html_math_output 0
|
||
\html_css_as_file 0
|
||
\html_be_strict false
|
||
\end_header
|
||
|
||
\begin_body
|
||
|
||
\begin_layout Standard
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\uoft}[1]{\mathfrak{F}#1}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\vect}[1]{\mathbf{#1}}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\ud}{\mathrm{d}}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\basis}[1]{\mathfrak{#1}}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\dc}[1]{Ш_{#1}}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\rec}[1]{#1^{-1}}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\recb}[1]{#1^{\widehat{-1}}}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\ints}{\mathbb{Z}}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\nats}{\mathbb{N}}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\reals}{\mathbb{R}}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\ush}[2]{Y_{#1,#2}}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\hgfr}{\mathbf{F}}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\ph}{\mathrm{ph}}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\kor}[1]{\underline{#1}}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\koru}[1]{\overline{#1}}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\hgf}{F}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\bra}[1]{\left\langle #1\right|}
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\ket}[1]{\left|#1\right\rangle }
|
||
\end_inset
|
||
|
||
|
||
\begin_inset FormulaMacro
|
||
\newcommand{\sci}[1]{\mathfrak{#1}}
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Title
|
||
Radiation power balance in nanoparticles
|
||
\end_layout
|
||
|
||
\begin_layout Author
|
||
Marek Nečada
|
||
\end_layout
|
||
|
||
\begin_layout Abstract
|
||
This memo deals with the formulae for radiation transfer, absorption, extinction
|
||
for single particle and composite system of several nanoparticles.
|
||
I also derive some natural conditions on the
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix elements.
|
||
\end_layout
|
||
|
||
\begin_layout Section*
|
||
Conventions
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
If not stated otherwise, Kristensson's notation and normalisation conventions
|
||
are used in this memo.
|
||
That means, among other things, that the
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix is dimensionless and the expansion coefficients of spherical waves
|
||
have units of
|
||
\begin_inset Formula $\sqrt{\mbox{power}}$
|
||
\end_inset
|
||
|
||
.
|
||
\end_layout
|
||
|
||
\begin_layout Section
|
||
Single particle
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Power transfer formula, absorption
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
The power radiated away by a linear scatterer at fixed harmonic frequency
|
||
is according to [Kris (2.28)]
|
||
\begin_inset Formula
|
||
\[
|
||
P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
where
|
||
\begin_inset Formula $n$
|
||
\end_inset
|
||
|
||
is a multiindex describing the type (E/M) and multipole degree and order
|
||
of the wave,
|
||
\begin_inset Formula $f_{n}$
|
||
\end_inset
|
||
|
||
is the coefficient corresponding to
|
||
\series bold
|
||
outgoing
|
||
\series default
|
||
(Hankel function based) and
|
||
\begin_inset Formula $a_{n}$
|
||
\end_inset
|
||
|
||
to
|
||
\series bold
|
||
regular
|
||
\series default
|
||
(first-order Bessel function based) waves.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
This is minus the power absorbed by the nanoparticle, and unless the particle
|
||
has some gain mechanism, this cannot be positive.
|
||
The basic condition for a physical nanoparticle therefore reads
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)\le0.\label{eq:Absorption is never negative}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Conditions on the
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
For a linear scatterer, the outgoing and regular wave coefficients are connected
|
||
via the
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
f_{n}=\sum_{n'}T_{nn'}a_{n'}.\label{eq:T-matrix definition}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Inequality
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:Absorption is never negative"
|
||
|
||
\end_inset
|
||
|
||
enables us to derive some conditions on the
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix.
|
||
Let the particle be driven by a wave of a single type
|
||
\begin_inset Formula $m$
|
||
\end_inset
|
||
|
||
only so the coefficients of all other components of the driving field are
|
||
zero,
|
||
\begin_inset Formula $a_{n}=\delta_{nm}$
|
||
\end_inset
|
||
|
||
.
|
||
From
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:Absorption is never negative"
|
||
|
||
\end_inset
|
||
|
||
and
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:T-matrix definition"
|
||
|
||
\end_inset
|
||
|
||
we get
|
||
\begin_inset Formula
|
||
\begin{eqnarray}
|
||
P & = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}a_{n'}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}a_{n'}a_{n}^{*}\right)\right)\label{eq:Absorption is never negative with T}\\
|
||
& = & \frac{1}{2}\sum_{n}\left(\left|\sum_{n'}T_{nn'}\delta_{n'm}\right|^{2}+\Re\left(\sum_{n'}T_{nn'}\delta_{n'm}\delta_{nm}\right)\right)\nonumber \\
|
||
& = & \frac{1}{2}\left(\left|\sum_{n}T_{nm}\right|^{2}+\Re T_{mm}\right)\le0\qquad\forall m,\label{eq:Absorption is never negative for single wave type}
|
||
\end{eqnarray}
|
||
|
||
\end_inset
|
||
|
||
a condition that should be ensured to be true e.g.
|
||
for the
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrices generated by SCUFF-EM.
|
||
\end_layout
|
||
|
||
\begin_layout Remark
|
||
For a particle of spherical symmetry
|
||
\begin_inset Formula $T_{nm}\propto\delta_{nm}$
|
||
\end_inset
|
||
|
||
, so
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:Absorption is never negative for single wave type"
|
||
|
||
\end_inset
|
||
|
||
gives
|
||
\begin_inset Formula $-\Re T_{mm}\ge\left|T_{mm}\right|^{2}$
|
||
\end_inset
|
||
|
||
which in turn implies
|
||
\begin_inset Formula $\left|T_{mm}\right|<1$
|
||
\end_inset
|
||
|
||
.
|
||
(Any similar conclusion for the general case?)
|
||
\end_layout
|
||
|
||
\begin_layout Problem
|
||
Obviously,
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:Absorption is never negative for single wave type"
|
||
|
||
\end_inset
|
||
|
||
is the consequence of the condition
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:Absorption is never negative"
|
||
|
||
\end_inset
|
||
|
||
.
|
||
But is
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:Absorption is never negative"
|
||
|
||
\end_inset
|
||
|
||
always true if
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:Absorption is never negative for single wave type"
|
||
|
||
\end_inset
|
||
|
||
satisfied?
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Let me rewrite the expression
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:Absorption is never negative with T"
|
||
|
||
\end_inset
|
||
|
||
(without any assumptions about the values of the coefficients
|
||
\begin_inset Formula $a_{n}$
|
||
\end_inset
|
||
|
||
) in Dirac notation where the ket
|
||
\begin_inset Formula $\ket a$
|
||
\end_inset
|
||
|
||
is the vector of all the exciting wave coefficients
|
||
\begin_inset Formula $a_{n}$
|
||
\end_inset
|
||
|
||
.
|
||
Furthemore,
|
||
\begin_inset Formula $\ket{e_{m}}$
|
||
\end_inset
|
||
|
||
is the unit vector containing one for the wave indexed by
|
||
\begin_inset Formula $m$
|
||
\end_inset
|
||
|
||
and zeros for the rest, so that
|
||
\begin_inset Formula $T_{mn}=\bra{e_{m}}T\ket{e_{n}}$
|
||
\end_inset
|
||
|
||
.
|
||
The general expression
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:Absorption is never negative with T"
|
||
|
||
\end_inset
|
||
|
||
and condition
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:Absorption is never negative"
|
||
|
||
\end_inset
|
||
|
||
then reads
|
||
\begin_inset Formula
|
||
\begin{eqnarray}
|
||
P & = & \frac{1}{2}\left(\sum_{n}\left|\bra{e_{n}}T\ket a\right|^{2}+\Re\bra aT\ket a\right)\nonumber \\
|
||
& = & \frac{1}{2}\left(\sum_{n}\bra aT^{\dagger}\ket{e_{n}}\bra{e_{n}}T\ket a+\frac{1}{2}\left(\bra aT\ket a+\bra aT\ket a^{*}\right)\right)\nonumber \\
|
||
& = & \frac{1}{2}\bra aT^{\dagger}T\ket a+\frac{1}{4}\bra a\left(T+T^{\dagger}\right)\ket a\le0\qquad\forall\ket a,\label{eq:Absorption is never negative in Dirac notation}
|
||
\end{eqnarray}
|
||
|
||
\end_inset
|
||
|
||
giving the following condition on the
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix:
|
||
\end_layout
|
||
|
||
\begin_layout Proposition
|
||
A
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
is unphysical unless the matrix
|
||
\begin_inset Formula
|
||
\begin{equation}
|
||
W\equiv\frac{T^{\dagger}T}{2}+\frac{T+T^{\dagger}}{4}\label{eq:Definition of the power matrix}
|
||
\end{equation}
|
||
|
||
\end_inset
|
||
|
||
is negative (semi)definite.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Obviously, matrix
|
||
\begin_inset Formula $W$
|
||
\end_inset
|
||
|
||
is self-adjoint and it has a clear interpretation given by
|
||
\begin_inset CommandInset ref
|
||
LatexCommand eqref
|
||
reference "eq:Absorption is never negative in Dirac notation"
|
||
|
||
\end_inset
|
||
|
||
– for an exciting field given by its expansion coefficient vector
|
||
\begin_inset Formula $\ket a$
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset Formula $-P=-\bra aW\ket a$
|
||
\end_inset
|
||
|
||
is the power absorbed by the scatterer.
|
||
\end_layout
|
||
|
||
\begin_layout Subsection
|
||
Lossless scatterer
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
Radiation energy conserving scatterer is not very realistic, but it might
|
||
provide some simplifications necessary for developing the topological theory.
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
A scatterer always conserves the radiation energy iff
|
||
\begin_inset Formula $W=0$
|
||
\end_inset
|
||
|
||
, i.e.
|
||
iff
|
||
\begin_inset Formula
|
||
\[
|
||
\frac{T^{\dagger}T}{2}+\frac{T+T^{\dagger}}{4}=0.
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Subsubsection
|
||
Diagonal
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
To get some insight into what does this mean, it might be useful to start
|
||
with a diagonal
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
-matrix,
|
||
\begin_inset Formula $T_{mn}=t_{n}\delta_{mn}$
|
||
\end_inset
|
||
|
||
(valid for e.g.
|
||
a spherical particle).
|
||
Then for the
|
||
\begin_inset Formula $m$
|
||
\end_inset
|
||
|
||
-th matrix element we have
|
||
\begin_inset Formula
|
||
\[
|
||
\left(\Re t_{n}\right)^{2}+\left(\Im t_{n}\right)^{2}+\Re t_{n}=0
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
or
|
||
\begin_inset Formula
|
||
\[
|
||
\left(\Re t_{n}+\frac{1}{2}\right)^{2}+\left(\Im t_{n}\right)^{2}=\left(\frac{1}{2}\right)^{2}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
which gives a relation between the real and imaginary parts of the scattering
|
||
coefficients.
|
||
There are two
|
||
\begin_inset Quotes eld
|
||
\end_inset
|
||
|
||
extremal
|
||
\begin_inset Quotes erd
|
||
\end_inset
|
||
|
||
real values,
|
||
\begin_inset Formula $t_{n}=0$
|
||
\end_inset
|
||
|
||
(no scattering at all) and
|
||
\begin_inset Formula $t_{n}=-1$
|
||
\end_inset
|
||
|
||
.
|
||
In general, the possible values lie on a half-unit circle in the complex
|
||
plane with the centre at
|
||
\begin_inset Formula $-1/2$
|
||
\end_inset
|
||
|
||
.
|
||
The half-unit disk delimited by the circle is the (realistic) lossy region,
|
||
while everything outside it represents (unrealistic) system with gain.
|
||
\end_layout
|
||
|
||
\begin_layout Section
|
||
Multiple scattering
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
The purpose of this section is to clarify the formulae for absorption and
|
||
extinction in a system of multiple scatterers.
|
||
Let the scatterers be indexed by fraktur letters, so the power
|
||
\begin_inset Quotes eld
|
||
\end_inset
|
||
|
||
generated
|
||
\begin_inset Quotes erd
|
||
\end_inset
|
||
|
||
by nanoparticle
|
||
\begin_inset Formula $\sci k$
|
||
\end_inset
|
||
|
||
will be denoted as
|
||
\begin_inset Formula $P^{\sci k}$
|
||
\end_inset
|
||
|
||
.
|
||
Quantities without such indices apply
|
||
\begin_inset Note Note
|
||
status open
|
||
|
||
\begin_layout Plain Layout
|
||
se vztahují
|
||
\end_layout
|
||
|
||
\end_inset
|
||
|
||
to the whole system, so
|
||
\begin_inset Formula $P$
|
||
\end_inset
|
||
|
||
will now denote the total power generated by the system.
|
||
Now
|
||
\begin_inset Formula $\ket{a_{0}^{\sci k}}$
|
||
\end_inset
|
||
|
||
is the expansion of the external driving field in the location of nanoparticle
|
||
|
||
\begin_inset Formula $\sci k$
|
||
\end_inset
|
||
|
||
and
|
||
\begin_inset Formula $\ket{a^{\sci k}}$
|
||
\end_inset
|
||
|
||
is the expansion of the external field together with the fields scattered
|
||
from other nanoparticles,
|
||
\begin_inset Formula
|
||
\[
|
||
\ket{a^{\sci k}}=\ket{a_{0}^{\sci k}}+\sum_{\sci l\ne\sci k}S_{\sci k\leftarrow\sci l}\ket{f^{\sci l}}.
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
Rewriting
|
||
\begin_inset Formula $\ket{f^{\sci l}}=T^{\sci l}\ket{a^{\sci l}}$
|
||
\end_inset
|
||
|
||
, this gives the scattering problem in terms of
|
||
\begin_inset Formula $\ket{a^{\sci k}}$
|
||
\end_inset
|
||
|
||
,
|
||
\begin_inset Formula
|
||
\[
|
||
\ket{a^{\sci k}}=\ket{a_{0}^{\sci k}}+\sum_{\sci l\ne\sci k}S_{\sci k\leftarrow\sci l}T^{\sci l}\ket{a^{\sci l}}
|
||
\]
|
||
|
||
\end_inset
|
||
|
||
or, in the indexless notation for the whole system
|
||
\begin_inset Formula
|
||
\begin{eqnarray*}
|
||
\ket a & = & \ket{a_{0}}+ST\ket a,\\
|
||
\left(1-ST\right)\ket a & = & \ket{a_{0}}
|
||
\end{eqnarray*}
|
||
|
||
\end_inset
|
||
|
||
Alternatively, multiplication by
|
||
\begin_inset Formula $T$
|
||
\end_inset
|
||
|
||
from the left gives the problem in terms of the outgoing wave coefficients,
|
||
\begin_inset Formula
|
||
\begin{eqnarray*}
|
||
\ket f & = & T\ket{a_{0}}+TS\ket f,\\
|
||
\left(1-TS\right)\ket f & = & T\ket{a_{0}}.
|
||
\end{eqnarray*}
|
||
|
||
\end_inset
|
||
|
||
|
||
\end_layout
|
||
|
||
\begin_layout Standard
|
||
|
||
\series bold
|
||
TODO
|
||
\end_layout
|
||
|
||
\end_body
|
||
\end_document
|