qpms/qpms/pointgroups.c

327 lines
10 KiB
C

#include "pointgroups.h"
#include <search.h>
#include <stdlib.h>
#define PAIRCMP(a, b) {\
if ((a) < (b)) return -1;\
if ((a) > (b)) return 1;\
}
// THIS IS NUMERICALLY UNSTABLE! FIXME!!!!!!
int qpms_pg_irot3_cmp(const qpms_irot3_t *p1, const qpms_irot3_t *p2) {
QPMS_WARN("NUMERICALLY UNSTABLE! DON'T USE ME!")
PAIRCMP(p1->det, p2->det);
const qpms_quat_t r1 = qpms_quat_standardise(p1->rot), r2 = qpms_quat_standardise(p2->rot);
PAIRCMP(creal(r1.a), creal(r2.a));
PAIRCMP(cimag(r1.a), cimag(r2.a));
PAIRCMP(creal(r1.b), creal(r2.b));
PAIRCMP(cimag(r1.b), cimag(r2.b));
return 0;
}
int qpms_pg_irot3_cmp_v(const void *av, const void *bv) {
const qpms_irot3_t *a = av, *b = bv;
return qpms_pg_irot3_cmp(a, b);
}
int qpms_pg_irot3_approx_cmp(const qpms_irot3_t *a, const qpms_irot3_t *b, double atol) {
if (qpms_irot3_isclose(*a, *b, atol)) return 0;
else return qpms_pg_irot3_cmp(a, b);
}
double qpms_pg_quat_cmp_atol = QPMS_QUAT_ATOL;
int qpms_pg_irot3_approx_cmp_v(const void *av, const void *bv) {
const qpms_irot3_t *a = av, *b = bv;
return qpms_pg_irot3_approx_cmp(a, b, qpms_pg_quat_cmp_atol);
}
/// Generates the canonical elements of a given 3D point group type.
qpms_irot3_t *qpms_pg_canonical_elems(qpms_irot3_t *target,
qpms_pointgroup_class cls, const qpms_gmi_t then) {
QPMS_UNTESTED;
const qpms_gmi_t order = qpms_pg_order(cls, then);
QPMS_ENSURE(order, "Cannot generate an infinite group!");
if (!target) QPMS_CRASHING_MALLOC(target, (1+order) * sizeof(qpms_irot3_t));
target[0] = QPMS_IROT3_IDENTITY;
qpms_gmi_t ngen = qpms_pg_genset_size(cls, then);
qpms_irot3_t gens[ngen];
(void) qpms_pg_genset(cls, then, gens);
// Let's try it with a binary search tree, as an exercise :)
void *root = NULL;
// put the starting element (identity) to the tree
(void) tsearch((void *) target, &root, qpms_pg_irot3_approx_cmp_v);
qpms_gmi_t n = 1; // No. of generated elements.
// And let's do the DFS without recursion; the "stack size" here (=order) might be excessive, but whatever
qpms_gmi_t gistack[order], //< generator indices (related to gens[])
srcstack[order], //< pre-image indices (related to target[])
si = 0; //< stack index
gistack[0] = 0;
srcstack[0] = 0;
while (si >= 0) { // DFS
if (gistack[si] < ngen) { // are there generators left at this level? If so, try another elem
if (n > order) QPMS_WTF; // TODO some error message
target[n] = qpms_irot3_mult(gens[gistack[si]], target[srcstack[si]]);
if (tfind((void *) &(target[n]), &root, qpms_pg_irot3_approx_cmp_v))
// elem found, try it with another gen in the next iteration
gistack[si]++;
else {
// elem not found, add it to the tree and proceed to next level
(void) tsearch( &(target[n]), &root, qpms_pg_irot3_approx_cmp_v);
++si;
gistack[si] = 0;
srcstack[si] = n;
++n;
}
} else { // no generators left at this level, get to the previous level
--si;
if (si >= 0) ++gistack[si];
}
}
QPMS_ENSURE(n == order, "Point group generation failure "
"(assumed group order = %d, got %d; qpms_pg_quat_cmp_atol = %g)",
order, n, qpms_pg_quat_cmp_atol);
while(root) tdelete(*(qpms_irot3_t **)root, &root, qpms_pg_irot3_approx_cmp_v); // I hope this is the correct way.
return target;
}
qpms_irot3_t *qpms_pg_elems(qpms_irot3_t *target, qpms_pointgroup_t g) {
QPMS_UNTESTED;
target = qpms_pg_canonical_elems(target, g.c, g.n);
qpms_gmi_t order = qpms_pg_order(g.c, g.n);
const qpms_irot3_t o = g.orientation, o_inv = qpms_irot3_inv(o);
for(qpms_gmi_t i = 0 ; i < order; ++i)
target[i] = qpms_irot3_mult(o_inv, qpms_irot3_mult(target[i], o));
return target;
}
_Bool qpms_pg_is_subgroup(qpms_pointgroup_t small, qpms_pointgroup_t big) {
QPMS_UNTESTED;
qpms_gmi_t order_big = qpms_pg_order(big.c, big.n);
qpms_gmi_t order_small = qpms_pg_order(small.c, small.n);
if (!order_big || !order_small)
QPMS_NOT_IMPLEMENTED("Subgroup testing for infinite groups not implemented");
if (order_big < order_small) return false;
// TODO maybe some other fast-track negative decisions
qpms_irot3_t *elems_small = qpms_pg_elems(NULL, small);
qpms_irot3_t *elems_big = qpms_pg_elems(NULL, small);
qsort(elems_big, order_big, sizeof(qpms_irot3_t), qpms_pg_irot3_cmp_v);
for(qpms_gmi_t smalli = 0; smalli < order_small; ++smalli) {
qpms_irot3_t *match = bsearch(&elems_small[smalli], elems_big, order_big,
sizeof(qpms_irot3_t), qpms_pg_irot3_approx_cmp_v);
if (!match) return false;
}
return true;
}
/// Returns the order of a given 3D point group type.
/** For infinite groups returns 0. */
qpms_gmi_t qpms_pg_order(qpms_pointgroup_class cls, ///< Point group class.
qpms_gmi_t n ///< Number of rotations around main axis (only for finite axial groups).
) {
if (qpms_pg_is_finite_axial(cls))
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
switch(cls) {
// Axial groups
case QPMS_PGS_CN:
return n;
case QPMS_PGS_S2N:
case QPMS_PGS_CNH:
case QPMS_PGS_CNV:
case QPMS_PGS_DN:
return 2*n;
case QPMS_PGS_DND:
case QPMS_PGS_DNH:
return 4*n;
// Remaining polyhedral groups
case QPMS_PGS_T:
return 12;
case QPMS_PGS_TD:
case QPMS_PGS_TH:
case QPMS_PGS_O:
return 24;
case QPMS_PGS_OH:
return 48;
case QPMS_PGS_I:
return 60;
case QPMS_PGS_IH:
return 120;
// Continuous axial groups
case QPMS_PGS_CINF:
case QPMS_PGS_CINFH:
case QPMS_PGS_CINFV:
case QPMS_PGS_DINF:
case QPMS_PGS_DINFH:
// Remaining continuous groups
case QPMS_PGS_SO3:
case QPMS_PGS_O3:
return 0; // 0 is infinity :-)
default:
QPMS_WTF;
}
}
/// Returns the number of canonical generators of a given 3D point group type.
/** TODO what does it do for infinite (Lie) groups? */
qpms_gmi_t qpms_pg_genset_size(qpms_pointgroup_class cls, ///< Point group class.
qpms_gmi_t n ///< Number of rotations around main axis (only for axial groups).
) {
if (qpms_pg_is_finite_axial(cls)) {
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
// n = 1 needs special care:
if (n==1)
switch(cls) {
case QPMS_PGS_CN: return 0; // triv.
case QPMS_PGS_S2N: return 1; // Z_2
case QPMS_PGS_CNH: return 1; // Dih_1
case QPMS_PGS_CNV: return 1; // Dih_1
case QPMS_PGS_DN: return 1; // Dih_1
case QPMS_PGS_DND: return 2; // Dih_2
case QPMS_PGS_DNH: return 2; // Dih_1 x Dih_1
default: QPMS_WTF;
}
}
switch(cls) {
// Axial groups
case QPMS_PGS_CN: return 1; // Z_n
case QPMS_PGS_S2N: return 1; // Z_{2n}
case QPMS_PGS_CNH: return 2; // Z_n x Dih_1
case QPMS_PGS_CNV: return 2; // Dih_n
case QPMS_PGS_DN: return 2; // Dih_n
case QPMS_PGS_DND: return 2; // Dih_2n
case QPMS_PGS_DNH: return 3; // Dih_n x Dih_1
// Remaining polyhedral groups
case QPMS_PGS_T: // return ???; // A_4
case QPMS_PGS_TD: // return 2; // S_4
case QPMS_PGS_TH: // A_4 x Z_2
case QPMS_PGS_O: // S_4
case QPMS_PGS_OH: // return 3; // S_4 x Z_2
case QPMS_PGS_I: // A_5
case QPMS_PGS_IH: // A_5 x Z_2
// Continuous axial groups
case QPMS_PGS_CINF:
case QPMS_PGS_CINFH:
case QPMS_PGS_CINFV:
case QPMS_PGS_DINF:
case QPMS_PGS_DINFH:
// Remaining continuous groups
case QPMS_PGS_SO3:
case QPMS_PGS_O3:
QPMS_NOT_IMPLEMENTED("Not yet implemented for this point group class.");
default:
QPMS_WTF;
}
}
/// Fills an array of canonical generators of a given 3D point group type.
/** TODO what does it do for infinite (Lie) groups? */
qpms_gmi_t qpms_pg_genset(qpms_pointgroup_class cls, ///< Point group class.
qpms_gmi_t n, ///< Number of rotations around main axis (only for axial groups).
qpms_irot3_t gen[] ///< Target generator array
) {
if (qpms_pg_is_finite_axial(cls)) {
QPMS_ENSURE(n > 0, "n must be at least 1 for finite axial groups");
// n = 1 needs special care:
if (n==1)
switch(cls) {
case QPMS_PGS_CN:
return 0; // triv.
case QPMS_PGS_S2N:
gen[0] = QPMS_IROT3_INVERSION;
return 1; // Z_2
case QPMS_PGS_CNH:
gen[0] = QPMS_IROT3_ZFLIP;
return 1; // Dih_1
case QPMS_PGS_CNV:
gen[0] = QPMS_IROT3_XFLIP;
return 1; // Dih_1
case QPMS_PGS_DN:
gen[0] = QPMS_IROT3_XROT_PI; // CHECKME
return 1; // Dih_1
case QPMS_PGS_DND:
gen[0] = QPMS_IROT3_INVERSION;
gen[1] = QPMS_IROT3_XFLIP;
return 2; // Dih_2
case QPMS_PGS_DNH: // CHECKME
gen[0] = QPMS_IROT3_ZFLIP;
gen[1] = QPMS_IROT3_XFLIP;
return 2; // Dih_1 x Dih_1
default: QPMS_WTF;
}
}
switch(cls) {
// Axial groups
case QPMS_PGS_CN:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
return 1; // Z_n
case QPMS_PGS_S2N:
gen[0].rot = qpms_quat_zrot_Nk(2*n, 1);
gen[0].det = -1;
return 1; // Z_{2n}
case QPMS_PGS_CNH:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
gen[1] = QPMS_IROT3_ZFLIP;
return 2; // Z_n x Dih_1
case QPMS_PGS_CNV:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
gen[1] = QPMS_IROT3_XFLIP;
return 2; // Dih_n
case QPMS_PGS_DN:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
gen[1] = QPMS_IROT3_XROT_PI;
return 2; // Dih_n
case QPMS_PGS_DND:
gen[0].rot = qpms_quat_zrot_Nk(2*n, 1);
gen[0].det = -1;
gen[1] = QPMS_IROT3_XFLIP;
return 2; // Dih_2n
case QPMS_PGS_DNH:
gen[0] = qpms_irot3_zrot_Nk(n, 1);
gen[1] = QPMS_IROT3_ZFLIP;
gen[2] = QPMS_IROT3_XFLIP;
return 3; // Dih_n x Dih_1
// Remaining polyhedral groups
case QPMS_PGS_T: // return ???; // A_4
case QPMS_PGS_TD: // return 2; // S_4
case QPMS_PGS_TH: // A_4 x Z_2
case QPMS_PGS_O: // S_4
case QPMS_PGS_OH: // return 3; // S_4 x Z_2
case QPMS_PGS_I: // A_5
case QPMS_PGS_IH: // A_5 x Z_2
// Continuous axial groups
case QPMS_PGS_CINF:
case QPMS_PGS_CINFH:
case QPMS_PGS_CINFV:
case QPMS_PGS_DINF:
case QPMS_PGS_DINFH:
// Remaining continuous groups
case QPMS_PGS_SO3:
case QPMS_PGS_O3:
QPMS_NOT_IMPLEMENTED("Not yet implemented for this point group class.");
default:
QPMS_WTF;
}
}