281 lines
11 KiB
C
281 lines
11 KiB
C
// Perform Ewald summation (2D xy-lattice in 3D space ) of SSWFs with different Ewald parameters and check whether the difference is inside the tolerance range.
|
|
// run as
|
|
// test_scalar_ewald32 lMax a1.x a1.y a2.x a2.y wavenum.real wavenum.imag k.x k.y particle_shift.x particle_shift.y csphase rtol atol maxR maxK eta1 [eta2 [eta 3 ...]]
|
|
// c99 -o ewaldshift3g_vargeom -ggdb -Wall -I ../ ewaldshift3g_vargeom.c ../qpms/ewald.c ../qpms/ewaldsf.c ../qpms/lattices2d.c ../qpms/latticegens.c -lgsl -lm -lblas
|
|
|
|
|
|
|
|
// implementation of the [LT(4.16)] test
|
|
#include <math.h>
|
|
#define M_SQRTPI 1.7724538509055160272981674833411452
|
|
#define M_SQRT3 1.7320508075688772935274463415058724
|
|
#include <qpms/ewald.h>
|
|
#include <qpms/tiny_inlines.h>
|
|
#include <qpms/indexing.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <float.h>
|
|
#include <gsl/gsl_sf_legendre.h>
|
|
typedef struct ewaldtest2d_params {
|
|
qpms_l_t lMax;
|
|
point2d b1, b2;
|
|
point2d beta;
|
|
point2d particle_shift;
|
|
complex double k;
|
|
//double a;
|
|
double eta;
|
|
double maxR;
|
|
double maxK;
|
|
double csphase;
|
|
} ewaldtest2d_params;
|
|
|
|
typedef struct ewaldtest2d_results {
|
|
ewaldtest2d_params p;
|
|
complex double *sigmas_short,
|
|
*sigmas_long,
|
|
sigma0,
|
|
*sigmas_total;
|
|
double *err_sigmas_short,
|
|
*err_sigmas_long,
|
|
err_sigma0,
|
|
*err_sigmas_total;
|
|
complex double *regsigmas_416;
|
|
} ewaldtest2d_results;
|
|
|
|
|
|
void ewaldtest2d_results_free(ewaldtest2d_results *r) {
|
|
free(r->sigmas_short);
|
|
free(r->sigmas_long);
|
|
free(r->sigmas_total);
|
|
free(r->err_sigmas_long);
|
|
free(r->err_sigmas_total);
|
|
free(r->err_sigmas_short);
|
|
free(r->regsigmas_416);
|
|
free(r);
|
|
}
|
|
|
|
static inline double san(double x) {
|
|
return fabs(x) < 1e-13 ? 0 : x;
|
|
}
|
|
|
|
int isclose_cmplx(complex double a, complex double b, double rtol, double atol) {
|
|
return cabs(a-b) <= atol + rtol * .5 * (cabs(a) + cabs(b));
|
|
}
|
|
|
|
ewaldtest2d_results *ewaldtest2d(const ewaldtest2d_params p);
|
|
|
|
int main(int argc, char **argv) {
|
|
bool verbose = !!getenv("QPMS_VERBOSE_TESTS");
|
|
gsl_set_error_handler(IgnoreUnderflowsGSLErrorHandler);
|
|
QPMS_ENSURE(argc >= 18, "At least 16 arguments expected, I see only %d.", argc-1);
|
|
int netas = argc - 17;
|
|
ewaldtest2d_params plist[netas];
|
|
double atol, rtol;
|
|
plist[0].lMax = atoi(argv[1]);
|
|
plist[0].b1.x = strtod(argv[2], NULL);
|
|
plist[0].b1.y = strtod(argv[3], NULL);
|
|
plist[0].b2.x = strtod(argv[4], NULL);
|
|
plist[0].b2.y = strtod(argv[5], NULL);
|
|
plist[0].k = strtod(argv[6], NULL) + I*strtod(argv[7], NULL);
|
|
plist[0].beta.x = strtod(argv[8], NULL);
|
|
plist[0].beta.y = strtod(argv[9], NULL);
|
|
plist[0].particle_shift.x = strtod(argv[10], NULL);
|
|
plist[0].particle_shift.y = strtod(argv[11], NULL);
|
|
plist[0].csphase = strtod(argv[12], NULL);
|
|
atol = strtod(argv[13], NULL);
|
|
rtol = strtod(argv[14], NULL);
|
|
plist[0].maxR = strtod(argv[15], NULL);
|
|
plist[0].maxK = strtod(argv[16], NULL);
|
|
plist[0].eta = strtod(argv[17], NULL);
|
|
for(int i = 1; i < netas; ++i) {
|
|
plist[i] = plist[0];
|
|
plist[i].eta = strtod(argv[17+i], NULL);
|
|
}
|
|
|
|
ewaldtest2d_results *r[netas];
|
|
|
|
int fails = 0;
|
|
|
|
for (size_t i = 0; i < netas; ++i) {
|
|
ewaldtest2d_params p = plist[i];
|
|
r[i] = ewaldtest2d(p);
|
|
// TODO print per-test header here
|
|
printf("===============================\n");
|
|
printf("b1 = (%g, %g), b2 = (%g, %g)," /* "K1 = (%g, %g), K2 = (%g, %g),"*/ " Kmax = %g, Rmax = %g, lMax = %d, eta = %g, k = %g%+gj, beta = (%g,%g), ps = (%g,%g), csphase = %g\n",
|
|
p.b1.x, p.b1.y, p.b2.x, p.b2.y,/*TODO K1, K2*/ p.maxK, p.maxR, p.lMax, p.eta, creal(p.k), cimag(p.k), p.beta.x, p.beta.y, p.particle_shift.x, p.particle_shift.y, p.csphase);
|
|
printf("sigma0: %.16g%+.16gj\n", creal(r[i]->sigma0), cimag(r[i]->sigma0));
|
|
for (qpms_l_t n = 0; n <= p.lMax; ++n) {
|
|
for (qpms_m_t m = -n; m <= n; ++m){
|
|
if ((m+n)%2) continue;
|
|
qpms_y_t y = qpms_mn2y_sc(m,n);
|
|
qpms_y_t y_conj = qpms_mn2y_sc(-m,n);
|
|
// y n m sigma_total (err), regsigmas_416 regsigmas_415_recon
|
|
if (verbose) printf("%zd %d %d: T:%.16g%+.16gj(%.3g) L:%.16g%+.16gj(%.3g) S:%.16g%+.16gj(%.3g) \n"
|
|
//"| predict %.16g%+.16gj \n| actual %.16g%+.16gj\n"
|
|
,
|
|
y, n, m, creal(san(r[i]->sigmas_total[y])), san(cimag(r[i]->sigmas_total[y])),
|
|
r[i]->err_sigmas_total[y],
|
|
san(creal(r[i]->sigmas_long[y])), san(cimag(r[i]->sigmas_long[y])),
|
|
r[i]->err_sigmas_long[y],
|
|
san(creal(r[i]->sigmas_short[y])), san(cimag(r[i]->sigmas_short[y])),
|
|
r[i]->err_sigmas_short[y]
|
|
// TODO and count big differences as failures.
|
|
//san(creal(r[i]->regsigmas_416[y])), san(cimag(r[i]->regsigmas_416[y])),
|
|
//san(creal(r[i]->sigmas_total[y]) + creal(r[i]->sigmas_total[y_conj])),
|
|
//san(cimag(r[i]->sigmas_total[y]) - cimag(r[i]->sigmas_total[y_conj]))
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool toprint[netas];
|
|
|
|
for (qpms_l_t n = 0; n <= plist[0].lMax; ++n) {
|
|
for (qpms_m_t m = -n; m <= n; ++m){
|
|
memset(toprint, 0, netas*sizeof(bool));
|
|
if ((m+n)%2) continue;
|
|
qpms_y_t y = qpms_mn2y_sc(m,n);
|
|
qpms_y_t y_conj = qpms_mn2y_sc(-m,n);
|
|
for (size_t i = 0; i < netas; ++i) {
|
|
for (size_t j = i+1; j < netas; ++j){
|
|
if (!isclose_cmplx(r[i]->sigmas_total[y], r[j]->sigmas_total[y], rtol, atol))
|
|
toprint[i] = toprint[j] = true;
|
|
}
|
|
if (toprint[i]) {
|
|
++fails;
|
|
printf("with eta = %.16g:\n", plist[i].eta);
|
|
printf("%zd %d %d: T:%.16g%+.16gj(%.3g) L:%.16g%+.16gj(%.3g) S:%.16g%+.16gj(%.3g) \n"
|
|
//"| predict %.16g%+.16gj \n| actual %.16g%+.16gj\n"
|
|
,
|
|
y, n, m, creal(san(r[i]->sigmas_total[y])), san(cimag(r[i]->sigmas_total[y])),
|
|
r[i]->err_sigmas_total[y],
|
|
san(creal(r[i]->sigmas_long[y])), san(cimag(r[i]->sigmas_long[y])),
|
|
r[i]->err_sigmas_long[y],
|
|
san(creal(r[i]->sigmas_short[y])), san(cimag(r[i]->sigmas_short[y])),
|
|
r[i]->err_sigmas_short[y]
|
|
// TODO and count big differences as failures.
|
|
//san(creal(r[i]->regsigmas_416[y])), san(cimag(r[i]->regsigmas_416[y])),
|
|
//san(creal(r[i]->sigmas_total[y]) + creal(r[i]->sigmas_total[y_conj])),
|
|
//san(cimag(r[i]->sigmas_total[y]) - cimag(r[i]->sigmas_total[y_conj]))
|
|
);
|
|
//if(!y) printf("0:%.16g%+.16g\n", san(creal(r[i]->sigma0)), san(cimag(r[i]->sigma0)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < netas; ++i)
|
|
ewaldtest2d_results_free(r[i]);
|
|
|
|
return fails;
|
|
}
|
|
|
|
|
|
int ewaldtest_counter = 0;
|
|
|
|
|
|
ewaldtest2d_results *ewaldtest2d(const ewaldtest2d_params p) {
|
|
cart3_t beta3 = cart22cart3xy(p.beta);
|
|
cart3_t particle_shift3 = cart22cart3xy(p.particle_shift);
|
|
|
|
cart2_t b1 = p.b1, b2 = p.b2, rb1, rb2;
|
|
if (QPMS_SUCCESS != l2d_reciprocalBasis2pi(b1, b2, &rb1, &rb2))
|
|
abort();
|
|
|
|
const double A = l2d_unitcell_area(b1, b2); // sqrt(3) * a * a / 2.; // unit cell size
|
|
const double K_len = cart2norm(rb1)+cart2norm(rb2); //4*M_PI/a/sqrt(3); // reciprocal vector length
|
|
|
|
ewaldtest2d_results *results = malloc(sizeof(ewaldtest2d_results));
|
|
results->p = p;
|
|
|
|
// skip zeroth point if it coincides with origin
|
|
bool include_origin = !(fabs(p.particle_shift.x) == 0
|
|
&& fabs(p.particle_shift.y) == 0);
|
|
|
|
PGen Rlgen = PGen_xyWeb_new(b1, b2, BASIS_RTOL, CART2_ZERO, 0, include_origin, p.maxR, false);
|
|
//PGen Rlgen_plus_shift = PGen_xyWeb_new(b1, b2, BASIS_RTOL, cart2_scale(-1 /* CHECKSIGN */, particle_shift2), 0, include_origin, p.maxR + a, false);
|
|
PGen Klgen = PGen_xyWeb_new(rb1, rb2, BASIS_RTOL, CART2_ZERO, 0, true, p.maxK + K_len, false);
|
|
//PGen Klgen_plus_beta = PGen_xyWeb_new(rb1, rb2, BASIS_RTOL, beta2, 0, true, p.maxK + K_len, false);
|
|
|
|
qpms_y_t nelem_sc = qpms_lMax2nelem_sc(p.lMax);
|
|
|
|
results->sigmas_short = malloc(sizeof(complex double)*nelem_sc);
|
|
results->sigmas_long = malloc(sizeof(complex double)*nelem_sc);
|
|
results->sigmas_total = malloc(sizeof(complex double)*nelem_sc);
|
|
results->err_sigmas_short = malloc(sizeof(double)*nelem_sc);
|
|
results->err_sigmas_long = malloc(sizeof(double)*nelem_sc);
|
|
results->err_sigmas_total = malloc(sizeof(double)*nelem_sc);
|
|
|
|
qpms_ewald3_constants_t *c = qpms_ewald3_constants_init(p.lMax, p.csphase);
|
|
|
|
if (0!=ewald3_sigma_long(results->sigmas_long,
|
|
results->err_sigmas_long, c, p.eta, p.k, A,
|
|
LAT_2D_IN_3D_XYONLY, &Klgen, false, beta3, particle_shift3))
|
|
abort();
|
|
if (0!=ewald3_sigma_short(
|
|
results->sigmas_short, results->err_sigmas_short, c,
|
|
p.eta, p.k, LAT_2D_IN_3D_XYONLY, &Rlgen, false, beta3, particle_shift3))
|
|
abort();
|
|
if (0!=ewald3_sigma0(&(results->sigma0), &(results->err_sigma0), c, p.eta, p.k))
|
|
abort();
|
|
for(qpms_y_t y = 0; y < nelem_sc; ++y) {
|
|
results->sigmas_total[y] = results->sigmas_short[y] + results->sigmas_long[y];
|
|
results->err_sigmas_total[y] = results->err_sigmas_short[y] + results->err_sigmas_long[y];
|
|
}
|
|
if(!include_origin) { // "Renormalised" contribution of origin point
|
|
results->sigmas_total[0] += results->sigma0;
|
|
results->err_sigmas_total[0] += results->err_sigma0;
|
|
}
|
|
|
|
// Now calculate the reference values [LT(4.16)]
|
|
results->regsigmas_416 = calloc(nelem_sc, sizeof(complex double));
|
|
results->regsigmas_416[0] = -2 * c->legendre0[gsl_sf_legendre_array_index(0,0)];
|
|
|
|
#if 0 // not yet implemented for the new API
|
|
{
|
|
double legendres[gsl_sf_legendre_array_n(p.lMax)];
|
|
points2d_rordered_t sel =
|
|
points2d_rordered_annulus(Kpoints_plus_beta, 0, true, p.k, false);
|
|
if (0 != sel.nrs)
|
|
{
|
|
point2d *beta_pq_lessthan_k = sel.base + sel.r_offsets[0];
|
|
size_t beta_pq_lessthan_k_count = sel.r_offsets[sel.nrs] - sel.r_offsets[0];
|
|
for(size_t i = 0; i < beta_pq_lessthan_k_count; ++i) {
|
|
point2d beta_pq = beta_pq_lessthan_k[i];
|
|
double rbeta_pq = cart2norm(beta_pq);
|
|
double arg_pq = atan2(beta_pq.y, beta_pq.x);
|
|
double denom = sqrt(p.k*p.k - rbeta_pq*rbeta_pq);
|
|
if( gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,
|
|
p.lMax, denom/p.k, p.csphase, legendres) != 0)
|
|
abort();
|
|
for (qpms_y_t y = 0; y < nelem_sc; ++y) {
|
|
qpms_l_t n; qpms_m_t m;
|
|
qpms_y2mn_sc_p(y, &m, &n);
|
|
if ((m+n)%2 != 0)
|
|
continue;
|
|
complex double eimf = cexp(I*m*arg_pq);
|
|
results->regsigmas_416[y] +=
|
|
4*M_PI*ipow(n)/p.k/A
|
|
* eimf * legendres[gsl_sf_legendre_array_index(n,abs(m))] * min1pow_m_neg(m)
|
|
/ denom;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
for(qpms_y_t y = 0; y < nelem_sc; ++y) {
|
|
qpms_l_t n; qpms_m_t m;
|
|
qpms_y2mn_sc_p(y, &m, &n);
|
|
if ((m+n)%2 != 0)
|
|
continue;
|
|
results->regsigmas_416[y] = NAN;
|
|
}
|
|
#endif
|
|
|
|
|
|
qpms_ewald3_constants_free(c);
|
|
++ewaldtest_counter;
|
|
return results;
|
|
}
|