qpms/notes/ewald-calculations-apr1.lyx

597 lines
27 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language finnish
\language_package default
\inputencoding auto
\fontencoding global
\font_roman TeX Gyre Pagella
\font_sans default
\font_typewriter default
\font_math auto
\font_default_family default
\use_non_tex_fonts true
\font_sc false
\font_osf true
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format pdf4
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize 10
\spacing single
\use_hyperref true
\pdf_title "Sähköpajan päiväkirja"
\pdf_author "Marek Nečada"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize a3paper
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1cm
\topmargin 5mm
\rightmargin 1cm
\bottommargin 1cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language swedish
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\lang english
\begin_inset FormulaMacro
\newcommand{\uoft}[1]{\mathfrak{F}#1}
\end_inset
\begin_inset FormulaMacro
\newcommand{\uaft}[1]{\mathfrak{\mathbb{F}}#1}
\end_inset
\begin_inset FormulaMacro
\newcommand{\usht}[2]{\mathbb{S}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\bsht}[2]{\mathrm{S}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\pht}[2]{\mathfrak{\mathbb{H}}_{#1}#2}
\end_inset
\begin_inset FormulaMacro
\newcommand{\vect}[1]{\mathbf{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ud}{\mathrm{d}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\basis}[1]{\mathfrak{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\dc}[1]{Ш_{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\rec}[1]{#1^{-1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\recb}[1]{#1^{\widehat{-1}}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ints}{\mathbb{Z}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\nats}{\mathbb{N}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\reals}{\mathbb{R}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ush}[2]{Y_{#1,#2}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\hgfr}{\mathbf{F}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\ph}{\mathrm{ph}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\kor}[1]{\underline{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\koru}[1]{\overline{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\hgf}{F}
\end_inset
Let
\end_layout
\begin_layout Paragraph
\lang english
Large k
\end_layout
\begin_layout Standard
\lang english
\begin_inset Formula
\begin{eqnarray*}
\mbox{OK}\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
\mbox{OK(D15.8.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}(\\
& & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{Γ\left(\frac{3-q+n}{2}\right)\text{Γ}\left(1+n-\frac{2-q+n}{2}\right)}\hgfr\left(\begin{array}{c}
\frac{2-q+n}{2},\frac{2-q+n}{2}-\left(1+n\right)+1\\
1/2
\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\
& - & \pi\frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(1+n-\frac{3-q+n}{2}\right)}\hgfr\left(\begin{array}{c}
\frac{3-q+n}{2},\frac{3-q+n}{2}-\left(1+n\right)+1\\
3/2
\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\
\mbox{OK20} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi(\\
& & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\hgfr\left(\begin{array}{c}
\frac{2-q+n}{2},\frac{2-q-n}{2}\\
1/2
\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)\\
& - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\hgfr\left(\begin{array}{c}
\frac{3-q+n}{2},\frac{3-q-n}{2}\\
3/2
\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right))\\
\mbox{(D15.2.2)OK3a,b} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\pi\sum_{s=0}^{\infty}(\\
& & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{2-q+n}{2}}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)}\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{1}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s}\\
& - & \frac{\left(\frac{k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{-\frac{3-q+n}{2}}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)}\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}+s\right)s!}\left(-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)^{s})\\
\mbox{OK4a} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{k^{n}}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\kor{\left(\sigma c-ik_{0}\right)^{2-q+n}}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\
& & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}k^{-2+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{2-q+n}+2s}\\
& - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}k^{-3+q\kor{-n}-2s}\left(\sigma c-ik_{0}\right)^{\kor{3-q+n}+2s})\\
\mbox{OK4b} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=0}^{\infty}\left(-1\right)^{s}(\\
& & \frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\kor{k^{-2+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{2s}}\\
& - & \frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\kor{k^{-3+q-2s}}\kor{\left(\sigma c-ik_{0}\right)^{1+2s}})\\
\mbox{OK4c} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=\kor 0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\\
& & \times\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
\mbox{OK4d} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}}\pi\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{3-q+n}{2}\right)\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)
\end{eqnarray*}
\end_inset
the fact that the partial sum
\begin_inset Formula $\sum_{s=0}^{\left\lceil \kappa/2\right\rceil -1}\ldots$
\end_inset
is zero is shown in the old messy notes (or TODO later here)
\end_layout
\begin_layout Standard
\lang english
Using DLMF 5.5.5, which says
\begin_inset Formula $Γ(2z)=\pi^{-1/2}2^{2z-1}\text{Γ}(z)\text{Γ}(z+\frac{1}{2})$
\end_inset
we have
\begin_inset Formula
\[
\text{Γ}\left(2-q+n\right)=\frac{2^{1-q+n}}{\sqrt{\pi}}\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right),
\]
\end_inset
so
\begin_inset Formula
\begin{eqnarray*}
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{\text{Γ}\left(2-q+n\right)}}{\kor{2^{n}}k_{0}^{q}}\kor{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)}\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\kor{\text{Γ}\left(\frac{2-q+n}{2}\right)}\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\koru{2^{1-q}}}{k_{0}^{q}}\koru{\sqrt{\pi}}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\kor{\koru{\text{Γ}\left(\frac{2-q+n}{2}\right)}\left(\frac{2-q+n}{2}\right)_{s}}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\kor{\koru{\text{Γ}\left(\frac{3-q+n}{2}\right)}\left(\frac{3-q+n}{2}\right)_{s}}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)
\end{eqnarray*}
\end_inset
Assuming that
\begin_inset Formula $\left\lceil \frac{\kappa}{2}\right\rceil $
\end_inset
is large enough so that all the divergent terms are cancelled, either the
left or the right part will become finite sums due to the
\begin_inset Quotes sld
\end_inset
extra
\begin_inset Quotes srd
\end_inset
Pochhammer
\begin_inset Formula $\left(\frac{3-q-n}{2}\right)_{s}$
\end_inset
or
\begin_inset Formula $\left(\frac{2-q-n}{2}\right)_{s}$
\end_inset
.
\end_layout
\begin_layout Standard
\lang english
According to Mathematica, the right sum with
\begin_inset Formula $s$
\end_inset
going from 0
\begin_inset Formula
\begin{equation}
\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\label{eq:right sum}
\end{equation}
\end_inset
can be written as (mathematica output)
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
\lang english
(2^(2 - q)*k^(-3 + q)*((-I)*k0 + c*sig)*Gamma[(3 + n - q)/2]*Hypergeometric2F1[3
/2 - n/2 - q/2, 3/2 + n/2 - q/2, 3/2, (k0 + I*c*sig)^2/k^2])/(k0^q*Gamma[(-1
+ n + q)/2])
\end_layout
\end_inset
\begin_inset Formula
\[
\frac{2^{2-q}k^{-3+q}\left(-ik_{0}+c\sigma\right)\text{Γ}\left(\frac{3+n-q}{2}\right)\hgf\left(\begin{array}{c}
\frac{3-n-q}{2},\frac{3+n-q}{2}\\
3/2
\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)}{k_{0}^{q;}\Gamma\left(\frac{-1+n+q}{2}\right)}
\]
\end_inset
\end_layout
\begin_layout Standard
\lang english
Similarly, the left sum
\begin_inset Formula
\begin{equation}
\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=0}^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}\right)\label{eq:left sum}
\end{equation}
\end_inset
gives (mathematica output)
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
\lang english
(2^(1 - q)*k^(-2 + q)*Gamma[(2 + n - q)/2]*Hypergeometric2F1[1 - n/2 - q/2,
1 + n/2 - q/2, 1/2, (k0 + I*c*sig)^2/k^2])/(k0^q*Gamma[(n + q)/2])
\end_layout
\end_inset
and is equal to
\begin_inset Formula
\[
\frac{2^{1-q}k^{-2+q}\Gamma\left(\frac{2+n-q}{2}\right)\hgf\left(\begin{array}{c}
\frac{2-n-q}{2},\frac{2+n-q}{2}\\
1/2
\end{array};-\frac{\left(\sigma c-ik_{0}\right)^{2}}{k^{2}}\right)}{k_{0}^{q;}\Gamma\left(\frac{n+q}{2}\right)}
\]
\end_inset
.
\end_layout
\begin_layout Subparagraph
\lang english
Special case
\begin_inset Formula $q=2,n=0$
\end_inset
\end_layout
\begin_layout Standard
\lang english
If
\begin_inset Formula $\kappa\ge2$
\end_inset
, the left part will drop and
\begin_inset Formula
\begin{eqnarray*}
\mbox{OKSq2n0b}\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{1}{2}+s\right)\text{Γ}\left(\frac{1}{2}+s\right)}{\text{Γ}\left(\frac{1}{2}\right)\kor{\text{Γ}\left(\frac{3}{2}+s\right)}s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\kor{\text{Γ}\left(\frac{1}{2}+s\right)}\text{Γ}\left(\frac{1}{2}+s\right)}{\text{Γ}\left(\frac{1}{2}\right)\koru{\kor{\text{Γ}\left(\frac{1}{2}+s\right)}\left(\frac{1}{2}+s\right)}s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\kor{\left\lceil \frac{\kappa}{2}\right\rceil }}^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\text{Γ}\left(\frac{1}{2}\right)\left(\frac{1}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
\mbox{(explain!)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}}\sum_{s=\koru 0}^{\infty}\left(-1\right)^{s}k^{-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(-\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\kor{\text{Γ}\left(\frac{1}{2}\right)}\left(\frac{1}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
& = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}\sqrt{\pi}}\frac{\left(\sigma c-ik_{0}\right)}{k}\kor{\sum_{s=0}^{\infty}\left(-1\right)^{s}\left(\frac{\sigma c-ik_{0}}{k}\right)^{2s}\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\left(\frac{1}{2}+s\right)s!}}\\
& = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-1}}{k_{0}^{2}\sqrt{\pi}}\frac{\left(\sigma c-ik_{0}\right)}{k}\frac{2\sqrt{\pi}\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)}{\frac{\sigma c-ik_{0}}{k}}\\
\mbox{OKSq2n0f} & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{1}{k_{0}^{2}}\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)
\end{eqnarray*}
\end_inset
where we used (TODO ref)
\begin_inset Formula
\[
\sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{1}{2}+s\right)}{\left(\frac{1}{2}+s\right)s!}\left(-x\right)^{s}=\frac{2\sqrt{\pi}\sinh^{-1}\sqrt{x}}{\sqrt{x}}
\]
\end_inset
The final result has asymptotic behaviour of ...
for
\begin_inset Formula $k\to\infty$
\end_inset
.
\end_layout
\begin_layout Subparagraph
Special case
\begin_inset Formula $q=3,n=1$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray*}
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)\\
& = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{1-2s}\left(\sigma c-ik_{0}\right)^{2s}\left(\frac{\text{Γ}\left(\frac{2-q+n}{2}\right)\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{2-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n}{2}\right)\text{Γ}\left(\frac{1}{2}+s\right)s!}-\frac{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\right)
\end{eqnarray*}
\end_inset
Let's hope that the left term (sum) in the big round brackets is zero for
\begin_inset Formula $\kappa\ge3$
\end_inset
(verified numerically, see file xxx; and BTW numerics show that it is zero
also when
\begin_inset Formula $k<k_{0}$
\end_inset
and
\begin_inset Formula $\kappa\ge3$
\end_inset
), and therefore
\begin_inset Formula
\begin{eqnarray*}
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\frac{\kor{\text{Γ}\left(\frac{3-q+n}{2}\right)\left(\frac{3-q+n}{2}\right)_{s}}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\\
& = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{1-q}}{k_{0}^{q}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}k^{-2+q-2s}\left(\sigma c-ik_{0}\right)^{2s}\frac{\koru{\text{Γ}\left(\frac{3-q+n}{2}+s\right)}\left(\frac{3-q-n}{2}\right)_{s}}{\text{Γ}\left(\frac{q+n-1}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\\
\pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}\kor{k^{1-2s}}\left(\sigma c-ik_{0}\right)^{2s}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}\\
& = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{2^{-2}\koru k}{k_{0}^{3}}\sqrt{\pi}\sum_{s=\left\lceil \frac{\kappa}{2}\right\rceil }^{\infty}\left(-1\right)^{s}\koru{\left(\frac{\sigma c-ik_{0}}{k}\right)^{2s}}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}\frac{\left(\sigma c-ik_{0}\right)}{k}
\end{eqnarray*}
\end_inset
and Mathematica tells us that
\begin_inset Formula
\begin{eqnarray*}
\sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}x^{s} & = & 2\frac{\sqrt{x\left(1-x\right)}\sin^{-1}\sqrt{x}}{\sqrt{\pi}\sqrt{x}}\\
\sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{1}{2}+s\right)\left(-\frac{1}{2}\right)_{s}}{\text{Γ}\left(\frac{3}{2}\right)\text{Γ}\left(\frac{3}{2}+s\right)s!}(-1)^{s}y^{2s} & = & 2\frac{y\sqrt{1+y^{2}}+\sinh^{-1}y}{\sqrt{\pi}y}
\end{eqnarray*}
\end_inset
so
\begin_inset Formula
\begin{eqnarray*}
\pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\kor{2^{-2}}k}{k_{0}^{3}}\kor{\sqrt{\pi}\left(\frac{\sigma c-ik_{0}}{k}\right)}\kor 2\frac{\left(\frac{\sigma c-ik_{0}}{k}\right)\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)}{\kor{\sqrt{\pi}\left(\frac{\sigma c-ik_{0}}{k}\right)}}\\
(Hq3n1) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k}{2k_{0}^{3}}\left(\left(\frac{\sigma c-ik_{0}}{k}\right)\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+\sinh^{-1}\left(\frac{\sigma c-ik_{0}}{k}\right)\right)
\end{eqnarray*}
\end_inset
\series bold
což je prej blbě (zjisti proč blbě opsáno nebo nesprávná větev logaritmu?);
\series default
správný výsledek je (mathematica kód:
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
- Sum[(-1)^sig Binomial[kap, sig] (((-I)*k0 + c*sig)*(k0*Sqrt[1 - (k0 +
I*c*sig)^2/k^2] + I*c*sig*Sqrt[1 - (k0 + I*c*sig)^2/k^2] + k*ArcSin[(k0
+ I*c*sig)/k]))/(2*k0^3*(k0 + I*c*sig)) , {sig, 0, kap}]
\end_layout
\end_inset
nebo FullSimplify
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
(((-I)*k0 + c*sig)*Sqrt[(k^2 - (k0 + I*c*sig)^2)/k^2] - I*k*ArcSin[(k0 +
I*c*sig)/k])/(2*k0^3)
\end_layout
\end_inset
; snad jsem to tentokrát neopsal blbě)
\begin_inset Formula
\begin{eqnarray*}
\pht 1{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\left(-ik_{0}+c\sigma\right)\left(k_{0}\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+ic\sigma\sqrt{1+\left(\frac{\sigma c-ik_{0}}{k}\right)^{2}}+k\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)\right)}{2k_{0}^{3}\left(k_{0}+ic\sigma\right)}\\
\mbox{(f.simpl.)} & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{\left(-ik_{0}+c\sigma\right)\sqrt{1-\left(\frac{k_{0}+ic\sigma}{k}\right)^{2}}-ik\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)}{2k_{0}^{3}}
\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Subparagraph
Special case
\begin_inset Formula $q=3,n=0$
\end_inset
\end_layout
\begin_layout Standard
Mathematica řiká po fullsimplify zhruba toto
\begin_inset Note Note
status open
\begin_layout Plain Layout
Sum[((-1)^(1 + sig)*(k*Sqrt[(k^2 - (k0 + I*c*sig)^2)/k^2] + (k0 + I*c*sig)*ArcSi
n[(k0 + I*c*sig)/k])*Binomial[kap, sig])/k0^3, {sig, 0, kap}]
\end_layout
\end_inset
\begin_inset Formula
\begin{eqnarray*}
\pht 0{s_{3,k_{0}}^{\textup{L}\kappa>3,c}}\left(k\right) & = & -\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k\sqrt{1-\left(\frac{k_{0}+ic\sigma}{k}\right)^{2}}+\left(k_{0}+ic\sigma\right)\sin^{-1}\left(\frac{k_{0}+ic\sigma}{k}\right)}{k_{0}^{3}}
\end{eqnarray*}
\end_inset
\begin_inset Formula $\kappa\ge2$
\end_inset
\end_layout
\begin_layout Paragraph
Small k
\end_layout
\begin_layout Standard
\lang english
\begin_inset Formula
\begin{eqnarray*}
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\text{Γ}\left(2-q+n\right)}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\hgfr\left(\frac{2-q+n}{2},\frac{3-q+n}{2};1+n;\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)\\
\mbox{(D15.2.2)} & = & \sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}\kor{Γ\left(2-q+n\right)}}{2^{n}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\sum_{s=0}^{\infty}\frac{\kor{\left(\frac{2-q+n}{2}\right)_{s}\left(\frac{3-q+n}{2}\right)_{s}}}{Γ(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s},\quad\left|\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right|<1
\end{eqnarray*}
\end_inset
Again we use
\begin_inset Formula
\[
\text{Γ}\left(2-q+n\right)=\frac{2^{1-q+n}}{\sqrt{\pi}}\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right),
\]
\end_inset
so
\begin_inset Formula
\begin{eqnarray*}
\pht n{s_{q,k_{0}}^{\textup{L}\kappa,c}}\left(k\right) & = & \koru{\frac{2^{1-q\kor{+n}}}{\sqrt{\pi}}}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}}{\kor{2^{n}}k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\sum_{s=0}^{\infty}\frac{\koru{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\text{Γ}\left(\frac{3-q+n}{2}+s\right)}}{\text{Γ}(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s}\\
\mbox{OKShort} & = & \frac{2^{1-q}}{\sqrt{\pi}}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\kor{\sum_{s=0}^{\infty}\frac{\text{Γ}\left(\frac{2-q+n}{2}+s\right)\text{Γ}\left(\frac{3-q+n}{2}+s\right)}{\text{Γ}(1+n+s)s!}\left(\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)^{s}}\\
\mbox{(D15.2.1)} & = & \frac{2^{1-q}}{\sqrt{\pi}}\sum_{\sigma=0}^{\kappa}\left(-1\right)^{\sigma}\binom{\kappa}{\sigma}\frac{k^{n}}{k_{0}^{q}\left(\sigma c-ik_{0}\right)^{2-q+n}}\koru{\frac{\text{Γ}\left(1+n\right)}{\text{Γ}\left(\frac{2-q+n}{2}\right)\text{Γ}\left(\frac{3-q+n}{2}\right)}\kor{\hgf\left(\begin{array}{c}
\frac{2-q+n}{2},\frac{3-q+n}{2}\\
1+n
\end{array};\frac{-k^{2}}{\left(\sigma c-ik_{0}\right)^{2}}\right)}}
\end{eqnarray*}
\end_inset
\end_layout
\end_body
\end_document