qpms/lepaper/infinite.lyx

2190 lines
53 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 584
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "TeX Gyre Pagella"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf true
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_author "Marek Nečada"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder false
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Infinite periodic systems
\begin_inset CommandInset label
LatexCommand label
name "sec:Infinite"
\end_inset
\begin_inset FormulaMacro
\newcommand{\dlv}{\vect a}
\end_inset
\begin_inset FormulaMacro
\newcommand{\rlv}{\vect b}
\end_inset
\end_layout
\begin_layout Standard
Although large finite systems are where MSTMM excels the most, there are
several reasons that makes its extension to infinite lattices (where periodic
boundary conditions might be applied) desirable as well.
Other methods might be already fast enough, but MSTMM will be faster in
most cases in which there is enough spacing between the neighboring particles.
MSTMM works well with any space group symmetry the system might have (as
opposed to, for example, FDTD with a cubic mesh applied to a honeycomb
lattice), which makes e.g.
application of group theory in mode analysis quite easy.
\begin_inset Note Note
status open
\begin_layout Plain Layout
Topology anoyne?
\end_layout
\end_inset
And finally, having a method that handles well both infinite and large
finite systems gives a possibility to study finite-size effects in periodic
scatterer arrays.
\end_layout
\begin_layout Subsection
Formulation of the problem
\begin_inset CommandInset label
LatexCommand label
name "subsec:Quasiperiodic scattering problem"
\end_inset
\end_layout
\begin_layout Standard
Let us have a linear system of compact EM scatterers on a homogeneous background
as in Section
\begin_inset CommandInset ref
LatexCommand eqref
reference "subsec:Multiple-scattering"
plural "false"
caps "false"
noprefix "false"
\end_inset
, but this time, the system shall be periodic: let there be a
\begin_inset Formula $d$
\end_inset
-dimensional (
\begin_inset Formula $d$
\end_inset
can be 1, 2 or 3) Bravais lattice embedded into the three-dimensional real
space, with lattice vectors
\begin_inset Formula $\left\{ \dlv_{i}\right\} _{i=1}^{d}$
\end_inset
, and let the lattice points be labeled with an
\begin_inset Formula $d$
\end_inset
-dimensional integer multi-index
\begin_inset Formula $\vect n\in\ints^{d}$
\end_inset
, so the lattice points have cartesian coordinates
\begin_inset Formula $\vect R_{\vect n}=\sum_{i=1}^{d}n_{i}\vect a_{i}$
\end_inset
.
There can be several scatterers per unit cell with indices
\begin_inset Formula $\alpha$
\end_inset
from a set
\begin_inset Formula $\mathcal{P}_{1}$
\end_inset
and (relative) positions
\begin_inset Formula $\vect r_{\alpha}$
\end_inset
inside the unit cell; any particle of the periodic system can thus be labeled
by a multiindex from
\begin_inset Formula $\mathcal{P}=\ints^{d}\times\mathcal{P}_{1}$
\end_inset
.
The scatterers are located at positions
\begin_inset Formula $\vect r_{\vect n,\alpha}=\vect R_{\vect n}+\vect r_{\alpha}$
\end_inset
and their
\begin_inset Formula $T$
\end_inset
-matrices are periodic,
\begin_inset Formula $T_{\vect n,\alpha}=T_{\alpha}$
\end_inset
.
In such system, the multiple-scattering problem
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be rewritten as
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\outcoeffp{\vect n,\alpha}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect m,\beta}=T_{\alpha}\rcoeffincp{\vect n,\alpha}.\quad\left(\vect n,\alpha\right)\in\mathcal{P}\label{eq:Multiple-scattering problem periodic}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Due to periodicity, we can also write
\begin_inset Formula $\tropsp{\vect n,\alpha}{\vect m,\beta}=\tropsp{\alpha}{\beta}\left(\vect R_{\vect m}-\vect R_{\vect n}\right)=\tropsp{\alpha}{\beta}\left(\vect R_{\vect m-\vect n}\right)=\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}$
\end_inset
.
Assuming quasi-periodic right-hand side with quasi-momentum
\begin_inset Formula $\vect k$
\end_inset
,
\begin_inset Formula $\rcoeffincp{\vect n,\alpha}=\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
\end_inset
, the solutions of
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem periodic"
plural "false"
caps "false"
noprefix "false"
\end_inset
will be also quasi-periodic according to Bloch theorem,
\begin_inset Formula $\outcoeffp{\vect n,\alpha}=\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
\end_inset
, and eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem periodic"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be rewritten as follows
\begin_inset Formula
\begin{align}
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}},\nonumber \\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m-\vect n}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\nonumber \\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect 0,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\nonumber \\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\beta\in\mathcal{P}}W_{\alpha\beta}\left(\vect k\right)\outcoeffp{\vect 0,\beta}\left(\vect k\right) & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\label{eq:Multiple-scattering problem unit cell}
\end{align}
\end_inset
so we reduced the initial scattering problem to one involving only the field
expansion coefficients from a single unit cell, but we need to compute
the
\begin_inset Quotes eld
\end_inset
lattice Fourier transform
\begin_inset Quotes erd
\end_inset
of the translation operator,
\begin_inset Formula
\begin{equation}
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect m\in\ints^{d}}\left(1-\delta_{\alpha\beta}\delta_{\vect m\vect 0}\right)\tropsp{\vect 0,\alpha}{\vect m,\beta}e^{i\vect k\cdot\vect R_{\vect m}},\label{eq:W definition}
\end{equation}
\end_inset
evaluation of which is possible but rather non-trivial due to the infinite
lattice sum, so we cover it separately in Sect.
\begin_inset CommandInset ref
LatexCommand eqref
reference "subsec:W operator evaluation"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\begin_layout Standard
As in the case of a finite system, eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem unit cell"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be written in a shorter block-matrix form,
\begin_inset Formula
\begin{equation}
\left(I-TW\right)\outcoeffp{\vect 0}\left(\vect k\right)=T\rcoeffincp{\vect 0}\left(\vect k\right)\label{eq:Multiple-scattering problem unit cell block form}
\end{equation}
\end_inset
Eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem unit cell"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be used to calculate electromagnetic response of the structure to external
quasiperiodic driving field most notably a plane wave.
However, the non-trivial solutions of the equation with right hand side
(i.e.
the external driving) set to zero,
\begin_inset Formula
\begin{equation}
\left(I-TW\right)\outcoeffp{\vect 0}\left(\vect k\right)=0,\label{eq:lattice mode equation}
\end{equation}
\end_inset
describes the
\emph on
lattice modes.
\emph default
Non-trivial solutions to
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lattice mode equation"
plural "false"
caps "false"
noprefix "false"
\end_inset
exist if the matrix on the left-hand side
\begin_inset Formula $M\left(\omega,\vect k\right)=\left(I-T\left(\omega\right)W\left(\omega,\vect k\right)\right)$
\end_inset
is singular this condition gives the
\emph on
dispersion relation
\emph default
for the periodic structure.
Note that in realistic (lossy) systems, at least one of the pair
\begin_inset Formula $\omega,\vect k$
\end_inset
will acquire complex values.
The solution
\begin_inset Formula $\outcoeffp{\vect 0}\left(\vect k\right)$
\end_inset
is then obtained as the right
\begin_inset Note Note
status open
\begin_layout Plain Layout
CHECK!
\end_layout
\end_inset
singular vector of
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
corresponding to the zero singular value.
\end_layout
\begin_layout Standard
Loss in the scatterers causes the solutions of
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lattice mode equation"
plural "false"
caps "false"
noprefix "false"
\end_inset
shift to complex frequencies.
If the background medium has constant real refractive index
\begin_inset Formula $n$
\end_inset
, negative (or positive) imaginary part of the frequency
\begin_inset Formula $\omega$
\end_inset
causes an artificial gain (or loss) in the medium, which manifests itself
as exponential magnification (or attenuation) of the radial parts of the
translation operators,
\begin_inset Formula $h_{l}^{\left(1\right)}\left(rn\omega/c\right)$
\end_inset
, w.r.t.
the distance; the gain might then balance the losses in particles, resulting
in sustained modes satisfying eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lattice mode equation"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\begin_inset Note Note
status open
\begin_layout Plain Layout
The gain in the system introduces some challenges, which we will discuss
in Section
\begin_inset CommandInset ref
LatexCommand eqref
reference "subsec:Physical-interpretation-of"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Numerical solution
\end_layout
\begin_layout Standard
In practice, equation
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem unit cell block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
is solved in the same way as eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
in the multipole degree truncated form.
\end_layout
\begin_layout Standard
The lattice mode problem
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lattice mode equation"
plural "false"
caps "false"
noprefix "false"
\end_inset
is (after multipole degree truncation) solved by finding
\begin_inset Formula $\omega,\vect k$
\end_inset
for which the matrix
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
has a zero singular value.
A naïve approach to do that is to sample a volume with a grid in the
\begin_inset Formula $\left(\omega,\vect k\right)$
\end_inset
space, performing a singular value decomposition of
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
at each point and finding where the lowest singular value of
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
is close enough to zero.
However, this approach is quite expensive, since
\begin_inset Formula $W\left(\omega,\vect k\right)$
\end_inset
has to be evaluated for each
\begin_inset Formula $\omega,\vect k$
\end_inset
pair separately (unlike the original finite case
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
translation operator
\begin_inset Formula $\trops$
\end_inset
, which, for a given geometry, depends only on frequency).
Therefore, a much more efficient but not completely robust approach to
determine the photonic bands is to sample the
\begin_inset Formula $\vect k$
\end_inset
-space (a whole Brillouin zone or its part) and for each fixed
\begin_inset Formula $\vect k$
\end_inset
to find a corresponding frequency
\begin_inset Formula $\omega$
\end_inset
with zero singular value of
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
using a minimisation algorithm (two- or one-dimensional, depending on whether
one needs the exact complex-valued
\begin_inset Formula $\omega$
\end_inset
or whether the its real-valued approximation is satisfactory).
Typically, a good initial guess for
\begin_inset Formula $\omega\left(\vect k\right)$
\end_inset
is obtained from the empty lattice approximation,
\begin_inset Formula $\left|\vect k\right|=\sqrt{\epsilon\mu}\omega/c_{0}$
\end_inset
(modulo reciprocal lattice points
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO write this in a clean way
\end_layout
\end_inset
).
A somehow challenging step is to distinguish the different bands that can
all be very close to the empty lattice approximation, especially if the
particles in the system are small.
In high-symmetry points of the Brilloin zone, this can be solved by factorising
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
into irreducible representations
\begin_inset Formula $\Gamma_{i}$
\end_inset
and performing the minimisation in each irrep separately, cf.
Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Symmetries"
plural "false"
caps "false"
noprefix "false"
\end_inset
, and using the different
\begin_inset Formula $\omega_{\Gamma_{i}}\left(\vect k\right)$
\end_inset
to obtain the initial guesses for the nearby points
\begin_inset Formula $\vect k+\delta\vect k$
\end_inset
.
\end_layout
\begin_layout Standard
An alternative, faster and more robust approach to generic minimisation
algorithms are eigensolvers for nonlinear eigenvalue problems based on
contour integration
\begin_inset CommandInset citation
LatexCommand cite
key "beyn_integral_2012,gavin_feast_2018"
literal "false"
\end_inset
which are able to find the roots of
\begin_inset Formula $M\left(\omega,\vect k\right)=0$
\end_inset
inside an area enclosed by a given complex frequency plane contour, assuming
that
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
is an analytical function of
\begin_inset Formula $\omega$
\end_inset
inside the contour.
A necessary prerequisite for this is that all the ingredients of
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
are analytical as well.
It practice, this usually means that interpolation cannot be used in a
straightforward way for material properties or
\begin_inset Formula $T$
\end_inset
-matrices.
For material response, constant permittivity or Drude-Lorentz models suit
this purpose well.
The need to evaluate the
\begin_inset Formula $T$
\end_inset
-matrices precisely (without the speedup provided by interpolation) at many
points might cause a performance bottleneck for scatterers with more complicate
d shapes.
And finally, the integration contour has to evade any branch cuts appearing
in the lattice-summed translation operator
\begin_inset Formula $W\left(\omega,\vect k\right)$
\end_inset
, as described in the following and illustrated in Fig.
\begin_inset space \space{}
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:ewald branch cuts"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Float figure
placement document
alignment document
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename figs/ewald_branchcuts.pdf
width 100col%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Left: Illustration of branch cuts in
\begin_inset Formula $M\left(\omega,\vect k\right)$
\end_inset
obtained using Ewald summation over two-dimensional square lattice in three-dim
ensional space filled with dielectric medium with constant real refraction
index
\begin_inset Formula $n$
\end_inset
and wavenumber
\begin_inset Formula $\kappa\left(\omega\right)=\omega n/c$
\end_inset
.
The function is holomorphic in the positive imaginary half-plane.
The points corresponding to the diffraction orders of an
\begin_inset Quotes eld
\end_inset
empty
\begin_inset Quotes erd
\end_inset
lattice lie on the real axis (pink), and from each of them two branch cuts
originate: one due to the branch cut in the incomplete
\begin_inset Formula $\Gamma$
\end_inset
function (orange, hyperbolic shape), and another due to the branch cut
of
\begin_inset Formula $\gamma(z)$
\end_inset
if the branch is selected to be continuous for
\begin_inset Formula $-3\pi/2<\arg\left(z-1\right)<\pi/2$
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
as defined in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lilgamma_old"
plural "false"
caps "false"
noprefix "false"
\end_inset
\end_layout
\end_inset
(blue, circular shape).
Further non-analyticities might stem from the material model: the violet
curve represents a branch cut originating from a complex square root in
the refractive index
\begin_inset Formula $n_{\mathrm{Au}}\left(\omega\right)=\sqrt{\varepsilon_{\mathrm{Au}}\left(\omega\right)}$
\end_inset
, where
\begin_inset Formula $\varepsilon_{\mathrm{Au}}\left(\omega\right)$
\end_inset
is the Drude-Lorentz permittivity model of gold used for the scatterers.
The other parameters used here are
\begin_inset Formula $p_{x}=580\,\mathrm{nm}$
\end_inset
(lattice period),
\begin_inset Formula $\vect k=\left(0.2\pi/p_{x},0\right)$
\end_inset
,
\begin_inset Formula $n=1.52$
\end_inset
.
The plot on the right shows the
\begin_inset Quotes eld
\end_inset
empty
\begin_inset Quotes erd
\end_inset
lattice diffraction orders on the line
\begin_inset Formula $\vect k=\left(k_{x},0\right),k_{x}\in\left[0,\pi/p_{x}\right].$
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "fig:ewald branch cuts"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Computing the lattice sum of the translation operator
\begin_inset CommandInset label
LatexCommand label
name "subsec:W operator evaluation"
\end_inset
\end_layout
\begin_layout Standard
The problem in evaluating
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W definition"
\end_inset
is the asymptotic behaviour of the translation operator at large distances,
\begin_inset Formula $\tropsp{\vect 0,\alpha}{\vect m,\beta}\sim\left|\vect R_{\vect m}\right|^{-1}e^{i\kappa\left|\vect R_{\vect m}\right|}$
\end_inset
, so that its lattice sum does not in the strict sense converge for any
\begin_inset Formula $d>1$
\end_inset
-dimensional lattice unless
\begin_inset Formula $\Im\kappa>0$
\end_inset
.
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Foot
status open
\begin_layout Plain Layout
Note that
\begin_inset Formula $d$
\end_inset
here is dimensionality of the lattice, not the space it lies in, which
I for certain reasons assume to be three.
(TODO few notes on integration and reciprocal lattices in some appendix)
\end_layout
\end_inset
\end_layout
\end_inset
The problem of poorly converging lattice sums can be solved by decomposing
the lattice-summed function into two parts: a short-range part that decays
fast and can be summed directly, and a long-range part which decays poorly
but is fairly smooth everywhere, so that its Fourier transform decays fast
enough, and to deal with the long range part by Poisson summation over
the reciprocal lattice.
This idea dates back to Ewald
\begin_inset CommandInset citation
LatexCommand cite
key "ewald_berechnung_1921"
literal "false"
\end_inset
who solved the problem for electrostatic potentials (Green's functions
for Laplace's equation).
For linear electrodynamic problems, ruled by Helmholtz equation, the same
basic idea can be used as well, resulting in exponentially convergent summation
formulae, but the technical details are considerably more complicated than
in electrostatics.
For the scalar Helmholtz equation in three dimensions, the formulae were
developed by Ham & Segall
\begin_inset CommandInset citation
LatexCommand cite
key "ham_energy_1961"
literal "false"
\end_inset
for 3D periodicity, Kambe
\begin_inset CommandInset citation
LatexCommand cite
key "kambe_theory_1967,kambe_theory_1967-1,kambe_theory_1968"
literal "false"
\end_inset
for 2D periodicity and Moroz
\begin_inset CommandInset citation
LatexCommand cite
key "moroz_quasi-periodic_2006"
literal "false"
\end_inset
for 1D periodicity.
A review of these methods can be found in
\begin_inset CommandInset citation
LatexCommand cite
key "linton_lattice_2010"
literal "false"
\end_inset
.
We will not rederive the formulae here, but for reference, we restate the
results in a form independent upon the normalisation and phase conventions
for spherical harmonic bases (pointing out some errors in the aforementioned
literature) and discuss some practical aspects of the numerical evaluation.
\begin_inset Note Note
status open
\begin_layout Plain Layout
Tady ještě upřesnit, co vlastně dělám.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
We note that the lattice sums for
\emph on
scalar
\emph default
Helmholtz equation are enough for the evaluation of the translation operator
lattice sum
\begin_inset Formula $W_{\alpha\beta}(\vect k)$
\end_inset
: in eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:translation operator singular"
plural "false"
caps "false"
noprefix "false"
\end_inset
we demonstratively expressed the translation operator elements as linear
combinations of (outgoing)
\emph on
scalar
\emph default
spherical wavefunctions
\begin_inset Formula
\begin{equation}
\sswfoutlm lm\left(\vect r\right)=h_{l}^{\left(1\right)}\left(r\right)\ush lm\left(\uvec r\right).\label{eq:scalar spherical wavefunctions}
\end{equation}
\end_inset
If we formally label
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Marginal
status open
\begin_layout Plain Layout
FP: Check signs.
\end_layout
\end_inset
\end_layout
\end_inset
\begin_inset Formula
\begin{equation}
\sigma_{l,m}\left(\vect k,\vect s\right)=\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},\vect s}\right)e^{i\vect{\vect k}\cdot\left(\vect R_{\vect n}-\vect s\right)}\sswfoutlm lm\left(\vect{R_{n}}-\vect s\right),\label{eq:sigma lattice sums}
\end{equation}
\end_inset
we see from eqs.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:translation operator singular"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
that the matrix elements of
\begin_inset Formula $W_{\alpha\beta}(\vect k)$
\end_inset
read
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Formula
\[
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect m\in\ints^{d}}\left(1-\delta_{\alpha\beta}\right)\tropsp{\vect 0,\alpha}{\vect m,\beta}e^{i\vect k\cdot\vect R_{\vect m}},
\]
\end_inset
\end_layout
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Formula
\begin{align*}
W_{\alpha,\tau lm;\beta,\tau l'm'}(\vect k) & =\sum_{\lambda=\left|l-l'\right|}^{l+l'}C_{lm;l'm'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r_{\beta}-\vect r_{\alpha}\right),\\
W_{\alpha,\tau lm;\beta,\tau'l'm'}(\vect k) & =\sum_{\lambda=\left|l-l'\right|+1}^{l+l'}D_{lm;l'm'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r_{\beta}-\vect r_{\alpha}\right),\quad\tau'\ne\tau,
\end{align*}
\end_inset
\end_layout
\end_inset
\begin_inset Formula
\[
W_{\alpha,\tau lm;\beta,\tau'l'm'}(\vect k)=\sum_{\lambda=\left|l-l'\right|+\left|\tau-\tau'\right|}^{l+l'}\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r_{\beta}-\vect r_{\alpha}\right),\quad\tau'\ne\tau,
\]
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Marginal
status open
\begin_layout Plain Layout
Check signs
\end_layout
\end_inset
\end_layout
\end_inset
where the constant factors are exactly the same as in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:translation operator constant factors"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\begin_layout Standard
The lattice sums
\begin_inset Formula $\sigma_{l,m}\left(\vect k,\vect s\right)$
\end_inset
are related to what is also called
\emph on
structural constants
\emph default
in some literature
\begin_inset CommandInset citation
LatexCommand cite
key "kambe_theory_1967,kambe_theory_1967-1,kambe_theory_1968"
literal "false"
\end_inset
, but the phase and normalisation differ.
For reader's reference, we list the Ewald-type formulae for lattice sums
\begin_inset Formula $\sigma_{l,m}\left(\vect k,\vect s\right)$
\end_inset
rewritten in a way that is independent on particular phase or normalisation
conventions of vector spherical harmonics.
\end_layout
\begin_layout Standard
In all three lattice dimensionality cases, the lattice sums are divided
into short-range and long-range parts,
\begin_inset Formula $\sigma_{l,m}\left(\vect k,\vect s\right)=\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)+\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)$
\end_inset
depending on a positive parameter
\begin_inset Formula $\eta$
\end_inset
.
The short-range part has in all three cases the same form:
\begin_inset Note Note
status open
\begin_layout Plain Layout
FP: Check sign of s
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{multline}
\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)=-\frac{2^{l+1}i}{\kappa^{l+1}\sqrt{\pi}}\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},-\vect s}\right)\left|\vect{R_{n}+\vect s}\right|^{l}\ush lm\left(\vect{R_{n}+\vect s}\right)e^{i\vect k\cdot\left(\vect{R_{n}+\vect s}\right)}\\
\times\int_{\eta}^{\infty}e^{-\left|\vect{R_{n}+\vect s}\right|^{2}\xi^{2}}e^{-\kappa^{2}/4\xi^{2}}\xi^{2l}\ud\xi\\
+\delta_{\vect{R_{n}},-\vect s}\frac{\delta_{l0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{\kappa^{2}}{4\eta^{2}}\right)\ush lm\left(\vect{R_{n}+\vect s}\right).\label{eq:Ewald in 3D short-range part}
\end{multline}
\end_inset
The formal
\begin_inset Formula $\left(1-\delta_{\vect{R_{n}},-\vect s}\right)$
\end_inset
factor here accounts for leaving out the direct excitation of a particle
by itself, corresponding to the
\begin_inset Formula $\left(1-\delta_{\alpha\beta}\delta_{\vect m\vect 0}\right)$
\end_inset
factor in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
The leaving out then causes an additional (
\begin_inset Quotes eld
\end_inset
self-interaction
\begin_inset Quotes erd
\end_inset
) term on the last line of
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Ewald in 3D short-range part"
plural "false"
caps "false"
noprefix "false"
\end_inset
, which appears only when the displacement vector
\begin_inset Formula $\vect s$
\end_inset
coincides with a lattice point.
Strictly speaking, this is not a
\begin_inset Quotes eld
\end_inset
short-range
\begin_inset Quotes erd
\end_inset
term, hence it is often noted separately in the literature; however, we
keep it in
\begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)$
\end_inset
for formal convenience.
\begin_inset Formula $\Gamma(a,z)$
\end_inset
is the incomplete Gamma function.
\begin_inset Note Note
status open
\begin_layout Plain Layout
Poznámka ohledně zahození radiální části u kulových fcí?
\end_layout
\end_inset
\end_layout
\begin_layout Standard
In practice, the integrals in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Ewald in 3D short-range part"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be easily evaluated by numerical quadrature and the incomplete
\begin_inset Formula $\Gamma$
\end_inset
-functions using the series or continued fraction representations from
\begin_inset CommandInset citation
LatexCommand cite
key "NIST:DLMF"
literal "false"
\end_inset
.
\end_layout
\begin_layout Standard
The explicit form of the long-range part of the lattice sum depends on the
lattice dimensionality.
The long-range parts are calculated as sums over the reciprocal lattice
\begin_inset Formula $\Lambda^{*}$
\end_inset
with lattice vectors
\begin_inset Formula $\left\{ \vect b_{i}\right\} _{i=1}^{d}$
\end_inset
lying in the same
\begin_inset Formula $d$
\end_inset
-dimensional subspace as the direct lattice vectors
\begin_inset Formula $\left\{ \vect a_{i}\right\} _{i=1}^{d}$
\end_inset
and satisfying
\begin_inset Formula $\vect a_{i}\cdot\vect b_{j}=\delta_{ij}$
\end_inset
.
\end_layout
\begin_layout Paragraph
Case
\begin_inset Formula $d=3$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=\frac{4\pi i^{l+1}}{\kappa\mathcal{A}}\sum_{\vect K\in\Lambda^{*}}\underbrace{e^{i\vect K\cdot\vect s}}_{\text{nemá tu být \ensuremath{\vect{k\cdot s}?}}}\frac{\left(\left|\vect k+\vect K\right|/\kappa\right)^{l}}{\kappa^{2}-\left|\vect k+\vect K\right|^{2}}e^{\left(\kappa^{2}-\left|\vect k+\vect K\right|^{2}\right)/4\eta^{2}}\ush lm\left(\vect k+\vect K\right)\label{eq:Ewald in 3D long-range part 3D}
\end{equation}
\end_inset
regardless of chosen coordinate axes.
Here
\begin_inset Formula $\mathcal{A}$
\end_inset
is the unit cell volume (or length/area in the following 1D/2D lattice
cases).
\end_layout
\begin_layout Paragraph
Case
\begin_inset Formula $d=2$
\end_inset
\end_layout
\begin_layout Standard
Reasonable explicit forms assume that the lattice lies inside the
\begin_inset Formula $xy$
\end_inset
-plane
\begin_inset Formula $\left(\theta=\pi/2\right)$
\end_inset
.
\begin_inset Foot
status open
\begin_layout Plain Layout
If a different coordinate system for
\begin_inset Formula $\sigma_{l,m}\left(\vect k,\vect s\right)$
\end_inset
is needed, one can always perform the lattice summation in the coordinate
system described here, and rotate the result a posteriori using Wigner
matrices, according to
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Wigner matrices"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\end_inset
The component of
\begin_inset Formula $\vect s$
\end_inset
normal to the lattice is then parallel to the
\begin_inset Formula $z$
\end_inset
axis,
\begin_inset Formula $\vect s=\vect s_{\parallel}+\vect s_{\perp}=\vect s_{\parallel}+s_{\perp}\uvec z$
\end_inset
.
With these assumptions
\begin_inset Note Note
status open
\begin_layout Plain Layout
FP: check sign of
\begin_inset Formula $\vect k$
\end_inset
\end_layout
\end_inset
\begin_inset Formula
\begin{multline}
\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{2}\mathcal{A}}\pi^{3/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\
\times\sum_{\vect K\in\Lambda^{*}}\underbrace{e^{i\vect K\cdot\vect s}}_{\text{nemá tu být \ensuremath{\vect{k\cdot s}?}}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{l-\left|m\right|}\left(-1\right)^{j}\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+1}\Delta_{j}\left(\frac{\kappa^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)^{2}}{4\eta^{2}},-i\kappa\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)s_{\perp}\right)\times\\
\times\sum_{\substack{s\\
j\le s\le\min\left(2j,l-\left|m\right|\right)\\
l-n+\left|m\right|\,\mathrm{even}
}
}\frac{1}{\left(2j-s\right)!\left(s-j\right)!}\frac{\left(-\kappa s_{\perp}\right)^{2j-s}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-s}}{\left(\frac{1}{2}\left(l-m-s\right)\right)!\left(\frac{1}{2}\left(l+m-s\right)\right)!}\label{eq:Ewald in 3D long-range part 1D 2D}
\end{multline}
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Formula
\begin{multline}
\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{d}\mathcal{A}}\pi^{2+\left(3-d\right)/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\
\times\sum_{\vect K\in\Lambda^{*}}\underbrace{e^{i\vect K\cdot\vect s}}_{\text{nemá tu být \ensuremath{\vect{k\cdot s}?}}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-2j}\Gamma\left(\frac{d-1}{2}-j,\frac{\kappa^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)^{2}}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\times\\
\times\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+3-d}\label{eq:Ewald in 3D long-range part 1D 2D-1}
\end{multline}
\end_inset
\end_layout
\end_inset
where
\begin_inset Formula
\begin{equation}
\gamma\left(z\right)=\left(z^{2}-1\right)^{\frac{1}{2}},\label{eq:lilgamma}
\end{equation}
\end_inset
\begin_inset Formula
\begin{equation}
\Delta_{j}\left(x,z\right)=\int_{x}^{\infty}t^{\frac{-1}{2}-n}\exp\left(-t+\frac{z^{2}}{4t}\right)\ud t.\label{eq:Delta_j}
\end{equation}
\end_inset
If the normal component
\begin_inset Formula $s_{\bot}$
\end_inset
is zero, in the last sum in eq.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Ewald in 3D long-range part 1D 2D"
plural "false"
caps "false"
noprefix "false"
\end_inset
only one term (
\begin_inset Formula $s=2j$
\end_inset
) will remain if
\begin_inset Formula $l-\left|m\right|$
\end_inset
is even; for
\begin_inset Formula $l-\left|m\right|$
\end_inset
odd, the sum will vanish completely.
Moreover,
\begin_inset Formula $\Delta_{j}\left(x,0\right)=\Gamma\left(1/2-j,x\right)$
\end_inset
.
If
\begin_inset Formula $s_{\bot}\ne0$
\end_inset
, the integral
\begin_inset Formula $\Delta_{j}\left(x,z\right)$
\end_inset
can be evaluated e.g.
using the Taylor series
\lang finnish
\begin_inset Formula
\[
\Delta_{j}\left(x,z\right)=\sum_{k=0}^{\infty}\Gamma\left(\frac{1}{2}-j-k,x\right)\frac{\left(z/2\right)^{2k}}{k!}
\]
\end_inset
which has infinite radius of convergence and is the first choice for small
\begin_inset Formula $z$
\end_inset
\lang english
.
Kambe
\begin_inset CommandInset citation
LatexCommand cite
key "kambe_theory_1968"
literal "false"
\end_inset
mentions a recurrence formula that can be obtained integrating
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Delta_j"
plural "false"
caps "false"
noprefix "false"
\end_inset
by parts (note that the signs are wrong in
\begin_inset CommandInset citation
LatexCommand cite
key "kambe_theory_1968"
literal "false"
\end_inset
)
\begin_inset Formula
\begin{equation}
\Delta_{j+1}\left(x,z\right)=\frac{4}{z^{2}}\left(\left(\frac{1}{2}-j\right)\Delta_{j}\left(x,z\right)-\Delta_{j-1}\left(x,z\right)+x^{\frac{1}{2}-j}e^{-x+\frac{z^{2}}{4x}}\right)\label{eq:Delta_j recurrent}
\end{equation}
\end_inset
with the first two terms
\begin_inset Formula
\begin{align*}
\Delta_{0}\left(x,z\right) & =\frac{\sqrt{\pi}}{2}e^{-x^{2}+\frac{z^{2}}{4x}}\left(w\left(-\frac{z}{2\sqrt{x}}+i\sqrt{x}\right)+w\left(\frac{z}{2\sqrt{x}}+i\sqrt{x}\right)\right),\\
\Delta_{1}\left(x,z\right) & =i\frac{\sqrt{\pi}}{z}e^{-x^{2}+\frac{z^{2}}{4x}}\left(w\left(-\frac{z}{2\sqrt{x}}+i\sqrt{x}\right)-w\left(\frac{z}{2\sqrt{x}}+i\sqrt{x}\right)\right),
\end{align*}
\end_inset
where
\begin_inset Formula $w\left(z\right)=e^{-z^{2}}\left(1+2i\pi^{-1/2}\int_{0}^{z}e^{t^{2}}\ud t\right)$
\end_inset
is the Faddeeva function.
However, the recurrence formula
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Delta_j recurrent"
plural "false"
caps "false"
noprefix "false"
\end_inset
is unsuitable for numerical evaluation if
\begin_inset Formula $z$
\end_inset
is small or
\begin_inset Formula $j$
\end_inset
is large due to its numerical instability.
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
and if the normal component
\begin_inset Formula $s_{\perp}$
\end_inset
is zero,
\begin_inset Formula
\begin{multline}
\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)=-\frac{i^{l+1}}{\kappa^{d}\mathcal{A}}\pi^{2+\left(3-d\right)/2}2\left(\left(l-m\right)/2\right)!\left(\left(l+m\right)/2\right)!\times\\
\times\sum_{\vect K\in\Lambda^{*}}\underbrace{e^{i\vect K\cdot\vect s}}_{\text{nemá tu být \ensuremath{\vect{k\cdot s}?}}}\ush lm\left(\vect k+\vect K\right)\sum_{j=0}^{\left[\left(l-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\left|\vect k+\vect K\right|/\kappa\right)^{l-2j}\Gamma\left(\frac{d-1}{2}-j,\frac{\kappa^{2}\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)}{4\eta^{2}}\right)}{j!\left(\frac{1}{2}\left(l-m\right)-j\right)!\left(\frac{1}{2}\left(l+m\right)-j\right)!}\times\\
\times\left(\gamma\left(\left|\vect k+\vect K\right|/\kappa\right)\right)^{2j+3-d}\label{eq:Ewald in 3D long-range part 1D 2D z = 0}
\end{multline}
\end_inset
\end_layout
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
The function
\begin_inset Formula $\gamma\left(z\right)$
\end_inset
used in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Ewald in 3D long-range part 1D 2D z = 0"
plural "false"
caps "false"
noprefix "false"
\end_inset
is defined as
\begin_inset Formula
\begin{equation}
\gamma\left(z\right)=\left(z-1\right)^{\frac{1}{2}}\left(z+1\right)^{\frac{1}{2}},\quad-\frac{3\pi}{2}<\arg\left(z-1\right)<\frac{\pi}{2},-\frac{\pi}{2}<\arg\left(z+1\right)<\frac{3\pi}{2}.\label{eq:lilgamma_old}
\end{equation}
\end_inset
\end_layout
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Marginal
status open
\begin_layout Plain Layout
FP: I have some error estimates derived in my notes.
Should I include them?
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
One pecularity of the two-dimensional case is the two-branchedness of the
function
\begin_inset Formula $\gamma\left(z\right)$
\end_inset
and the incomplete
\begin_inset Formula $\Gamma$
\end_inset
-function
\begin_inset Formula $\Gamma\left(\frac{1}{2}-j,z\right)$
\end_inset
appearing in the long-range part.
As a consequence, if we now explicitly label the dependence on the wavenumber,
\begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\kappa,\vect k,\vect s\right)$
\end_inset
has branch points at
\begin_inset Formula $\kappa=\left|\vect k+\vect K\right|$
\end_inset
for every reciprocal lattice vector
\begin_inset Formula $\vect K$
\end_inset
.
If the wavenumber
\begin_inset Formula $\kappa$
\end_inset
of the medium has a positive imaginary part,
\begin_inset Formula $\Im\kappa>0$
\end_inset
, then the translation operator elements
\begin_inset Formula $\trops_{\tau lm;\tau'l'm}\left(\kappa\vect r\right)$
\end_inset
decay exponentially as
\begin_inset Formula $\left|\vect r\right|\to\infty$
\end_inset
and the lattice sum in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W definition"
plural "false"
caps "false"
noprefix "false"
\end_inset
converges absolutely even in the direct space, and it is equal to the Ewald
sum with the principal branches used both in
\begin_inset Formula $\gamma\left(z\right)$
\end_inset
and
\begin_inset Formula $\Gamma\left(\frac{1}{2}-j,z\right)$
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "linton_lattice_2010"
literal "false"
\end_inset
.
For other values of
\begin_inset Formula $\kappa$
\end_inset
, we typically choose the branch in such way that
\begin_inset Formula $W_{\alpha\beta}\left(\vect k\right)$
\end_inset
is analytically continued even when the wavenumber's imaginary part crosses
the real axis.
The principal value of
\begin_inset Formula $\Gamma\left(\frac{1}{2}-j,z\right)$
\end_inset
has a branch cut at the negative real half-axis, which, considering the
lattice sum as a function of
\begin_inset Formula $\kappa$
\end_inset
, translates into branch cuts starting at
\begin_inset Formula $\kappa=\left|\vect k+\vect K\right|$
\end_inset
and continuing in straight lines towards
\begin_inset Formula $+\infty$
\end_inset
.
Therefore, in the quadrant
\begin_inset Formula $\Re z<0,\Im z\ge0$
\end_inset
we use the continuation of the principal value from
\begin_inset Formula $\Re z<0,\Im z<0$
\end_inset
instead of the principal branch
\begin_inset CommandInset citation
LatexCommand cite
after "8.2.9"
key "NIST:DLMF"
literal "false"
\end_inset
, moving the branch cut in the
\begin_inset Formula $z$
\end_inset
variable to the positive imaginary half-axis.
This moves the branch cuts w.r.t.
\begin_inset Formula $\kappa$
\end_inset
away from the real axis, as illustrated in Fig.
\begin_inset space \space{}
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:ewald branch cuts"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\begin_inset Note Note
status open
\begin_layout Plain Layout
Detailed physical interpretation of the remaining branch cuts is an open
question.
\end_layout
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
Generally, a good choice for
\begin_inset Formula $\eta$
\end_inset
is TODO; in order to achieve accuracy TODO, one has to evaluate the terms
on TODO lattice points.
\end_layout
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
(I HAVE SOME DERIVATIONS OF THE ESTIMATES IN MY NOTES; SHOULD I INCLUDE
THEM?)
\end_layout
\end_inset
\end_layout
\begin_layout Paragraph
Case
\begin_inset Formula $d=1$
\end_inset
\end_layout
\begin_layout Standard
For one-dimensional chains, the easiest choice is to align the lattice with
the
\begin_inset Formula $z$
\end_inset
axis.
\end_layout
\begin_layout Subsubsection
Choice of Ewald parameter and high-frequency breakdown
\end_layout
\begin_layout Standard
The Ewald parameter
\begin_inset Formula $\eta$
\end_inset
determines the pace of convergence of both parts.
The larger
\begin_inset Formula $\eta$
\end_inset
is, the faster
\begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)$
\end_inset
converges but the slower
\begin_inset Formula $\sigma_{l,m}^{\left(L,\eta\right)}\left(\vect k,\vect s\right)$
\end_inset
converges.
Therefore (based on the lattice geometry) it has to be adjusted in a way
that a reasonable amount of terms needs to be evaluated numerically from
both
\begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{S},\eta\right)}\left(\vect k,\vect s\right)$
\end_inset
and
\begin_inset Formula $\sigma_{l,m}^{\left(\mathrm{L},\eta\right)}\left(\vect k,\vect s\right)$
\end_inset
.
For one-dimensional, square, and cubic lattices, the optimal choice for
small frequencies (wavenumbers) is
\begin_inset Formula $\eta=\sqrt{\pi}/p$
\end_inset
where
\begin_inset Formula $p$
\end_inset
is the direct lattice period
\begin_inset CommandInset citation
LatexCommand cite
key "linton_lattice_2010"
literal "false"
\end_inset
.
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Marginal
status open
\begin_layout Plain Layout
Whatabout different geometries?
\end_layout
\end_inset
\end_layout
\end_inset
However, at larger wavelengths, TODO BLA BLA BLA which is detrimental for
accuracy in floating point arithmetics.
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Subsection
Physical interpretation of wavenumber with negative imaginary part; screening
\begin_inset CommandInset label
LatexCommand label
name "subsec:Physical-interpretation-of"
\end_inset
\end_layout
\begin_layout Plain Layout
left out for the time being
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Scattering cross sections and field intensities in periodic system
\end_layout
\begin_layout Standard
Once the scattering
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Multiple-scattering problem unit cell block form"
plural "false"
caps "false"
noprefix "false"
\end_inset
or mode problem
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:lattice mode equation"
plural "false"
caps "false"
noprefix "false"
\end_inset
is solved, one can evaluate some useful related quantities, such as scattering
cross sections (coefficients) or field intensities.
\end_layout
\begin_layout Standard
For plane wave scattering on 2D lattices, one can directly use the formulae
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:extincion CS multi"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:absorption CS multi alternative"
plural "false"
caps "false"
noprefix "false"
\end_inset
, taking the sums over scatterers inside one unit cell, to get the extinction
and absorption cross sections per unit cell.
From these, quantities such as absorption, extinction coefficients are
obtained using suitable normalisation by unit cell size, depending on lattice
dimensionality.
\end_layout
\begin_layout Standard
Ewald summation can be used for evaluating scattered field intensities outside
scatterers' circumscribing spheres: this requires expressing VSWF cartesian
components in terms of scalar spherical wavefunctions defined in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:scalar spherical wavefunctions"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
Fortunately, these can be obtained easily from the expressions for the
translation operator:
\begin_inset Formula
\begin{align}
\vswfrtlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\tropr_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm 21{m'}\left(0\right),\nonumber \\
\vswfouttlm{\tau}lm\left(\kappa\vect r\right) & =\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\vect r\right)\vswfrtlm 21{m'}\left(0\right),\label{eq:VSWFs expressed as translated dipole waves}
\end{align}
\end_inset
which follows from eqs.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:regular vswf translation"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:singular vswf translation"
plural "false"
caps "false"
noprefix "false"
\end_inset
and the fact that all the other regular VSWFs except for
\begin_inset Formula $\vswfrtlm 21{m'}$
\end_inset
vanish at origin.
For the quasiperiodic scattering problem formulated in section
\begin_inset CommandInset ref
LatexCommand ref
reference "subsec:Quasiperiodic scattering problem"
plural "false"
caps "false"
noprefix "false"
\end_inset
, the total electric field scattered from all the particles at point
\begin_inset Formula $\vect r$
\end_inset
located outside all the particles' circumscribing sphere reads, using eqs.
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:translation operator singular"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:sigma lattice sums"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:scalar spherical wavefunctions"
plural "false"
caps "false"
noprefix "false"
\end_inset
,
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Formula
\begin{align}
\trops_{\tau lm;\tau'l'm'}\left(\vect d\right) & =\sum_{\lambda=\left|l-l'\right|+\left|\tau-\tau'\right|}^{l+l'}\tropcoeff_{\tau lm;\tau'l'm'}^{\lambda}\psi_{\lambda,m-m'}\left(\vect d\right),\label{eq:translation operator singular-1}
\end{align}
\end_inset
\begin_inset Formula
\begin{equation}
\sigma_{l,m}\left(\vect k,\vect s\right)=\sum_{\vect n\in\ints^{d}}\left(1-\delta_{\vect{R_{n}},\vect s}\right)e^{i\vect{\vect k}\cdot\left(\vect R_{\vect n}-\vect s\right)}\sswfoutlm lm\left(\kappa\left(\vect{R_{n}}-\vect s\right)\right),\label{eq:sigma lattice sums}
\end{equation}
\end_inset
\begin_inset Formula
\begin{align*}
\vect E_{\mathrm{scat}}\left(\vect r\right) & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect n,\alpha}{\tau}lm\vect u_{\tau lm}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\\
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right)\\
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{-i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\trops_{\tau lm;21m'}\left(\kappa\left(\vect r+\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right),\text{FIXME signs}\\
& =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lme^{-i\vect k\cdot\vect R_{\vect n}}\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\psi_{\lambda,m-m'}\left(\kappa\left(\vect r+\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\vswfrtlm 21{m'}\left(0\right)\\
& =\sum_{\alpha\in\mathcal{P}_{1}}e^{-i\vect k\cdot\left(\vect r-\vect r_{\alpha}\right)}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r-\vect r_{\alpha}\right)
\end{align*}
\end_inset
\end_layout
\begin_layout Plain Layout
TODO fix signs and exponential phase factors
\end_layout
\end_inset
\begin_inset Formula
\begin{align*}
\vect E_{\mathrm{scat}}\left(\vect r\right) & =\sum_{\left(\vect n,\alpha\right)\in\mathcal{P}}\sum_{\tau lm}\outcoeffptlm{\vect n,\alpha}{\tau}lm\vect u_{\tau lm}\left(\kappa\left(\vect r-\text{\vect R_{\vect n}-\vect r_{\alpha}}\right)\right)\\
& =\sum_{\alpha\in\mathcal{P}_{1}}e^{-i\vect k\cdot\left(\vect r-\vect r_{\alpha}\right)}\sum_{\tau lm}\outcoeffptlm{\vect 0,\alpha}{\tau}lm\sum_{m'=-1}^{1}\sum_{\lambda=\left|l-1\right|+\left|\tau-2\right|}^{l+1}\tropcoeff_{\tau lm;21m'}^{\lambda}\sigma_{\lambda,m-m'}\left(\vect k,\vect r-\vect r_{\alpha}\right).
\end{align*}
\end_inset
\end_layout
\end_body
\end_document