1011 lines
36 KiB
Python
1011 lines
36 KiB
Python
"""
|
||
This file contains mostly legacy code, but is still kept for reference. Avoid using this.
|
||
"""
|
||
|
||
import numpy as np
|
||
from .qpms_c import *
|
||
ň = np.newaxis
|
||
import scipy
|
||
from .constants import ε_0, c, pi, π, e, ℏ, μ_0
|
||
eV = e
|
||
from scipy.special import lpmn, lpmv, spherical_jn, spherical_yn, poch, gammaln, factorial
|
||
import math
|
||
import cmath
|
||
import os
|
||
|
||
"""
|
||
'''
|
||
Try to import numba. Its pre-0.28.0 versions can not handle functions
|
||
containing utf8 identifiers, so we keep track about that.
|
||
'''
|
||
try:
|
||
import numba
|
||
use_jit = True
|
||
if numba.__version__ >= '0.28.0':
|
||
use_jit_utf8 = True
|
||
else:
|
||
use_jit_utf8 = False
|
||
except ImportError:
|
||
use_jit = False
|
||
use_jit_utf8 = False
|
||
'''
|
||
Accordingly, we define our own jit decorator that handles
|
||
different versions of numba or does nothing if numba is not
|
||
present. Note that functions that include unicode identifiers
|
||
must be decorated with #@ujit
|
||
'''
|
||
#def dummywrap(f):
|
||
# return f
|
||
def jit(f):
|
||
if use_jit:
|
||
return numba.jit(f)
|
||
else:
|
||
return f
|
||
def ujit(f):
|
||
if use_jit_utf8:
|
||
return numba.jit(f)
|
||
else:
|
||
return f
|
||
"""
|
||
|
||
# Coordinate transforms for arrays of "arbitrary" shape
|
||
#@ujit
|
||
def cart2sph(cart,axis=-1, allow2d=False):
|
||
cart = np.array(cart, copy=False)
|
||
if cart.shape[axis] == 3:
|
||
[x, y, z] = np.split(cart,3,axis=axis)
|
||
r = np.linalg.norm(cart,axis=axis,keepdims=True)
|
||
r_zero = np.logical_not(r)
|
||
θ = np.arccos(z/(r+r_zero))
|
||
elif cart.shape[axis] == 2 and allow2d:
|
||
[x, y] = np.split(cart,2,axis=axis)
|
||
r = np.linalg.norm(cart,axis=axis,keepdims=True)
|
||
r_zero = np.logical_not(r)
|
||
θ = np.broadcast_to(np.pi/2, x.shape)
|
||
else:
|
||
raise ValueError("The converted array has to have dimension 3 "
|
||
"(or 2 if allow2d==True)"
|
||
" along the given axis, not %d" % cart.shape[axis])
|
||
|
||
φ = np.arctan2(y,x) # arctan2 handles zeroes correctly itself
|
||
return np.concatenate((r,θ,φ),axis=axis)
|
||
|
||
#@ujit
|
||
def sph2cart(sph, axis=-1):
|
||
sph = np.array(sph, copy=False)
|
||
if (sph.shape[axis] != 3):
|
||
raise ValueError("The converted array has to have dimension 3"
|
||
" along the given axis")
|
||
[r,θ,φ] = np.split(sph,3,axis=axis)
|
||
sinθ = np.sin(θ)
|
||
x = r * sinθ * np.cos(φ)
|
||
y = r * sinθ * np.sin(φ)
|
||
z = r * np.cos(θ)
|
||
return np.concatenate((x,y,z),axis=axis)
|
||
|
||
#@ujit
|
||
def sph_loccart2cart(loccart, sph, axis=-1):
|
||
"""
|
||
Transformation of vector specified in local orthogonal coordinates
|
||
(tangential to spherical coordinates – basis r̂,θ̂,φ̂) to global cartesian
|
||
coordinates (basis x̂,ŷ,ẑ)
|
||
SLOW FOR SMALL ARRAYS
|
||
|
||
Parameters
|
||
----------
|
||
loccart: ... TODO
|
||
the transformed vector in the local orthogonal coordinates
|
||
|
||
sph: ... TODO
|
||
the point (in spherical coordinates) at which the locally
|
||
orthogonal basis is evaluated
|
||
|
||
Returns
|
||
-------
|
||
output: ... TODO
|
||
The coordinates of the vector in global cartesian coordinates
|
||
"""
|
||
loccart = np.array(loccart, copy=False)
|
||
sph = np.array(sph, copy=False)
|
||
if (loccart.shape[axis] != 3):
|
||
raise ValueError("The converted array has to have dimension 3"
|
||
" along the given axis")
|
||
[r,θ,φ] = np.split(sph,3,axis=axis)
|
||
sinθ = np.sin(θ)
|
||
cosθ = np.cos(θ)
|
||
sinφ = np.sin(φ)
|
||
cosφ = np.cos(φ)
|
||
|
||
#x = r * sinθ * cosφ
|
||
#y = r * sinθ * sinφ
|
||
#z = r * cosθ
|
||
r̂x = sinθ * cosφ
|
||
r̂y = sinθ * sinφ
|
||
r̂z = cosθ
|
||
θ̂x = cosθ * cosφ
|
||
θ̂y = cosθ * sinφ
|
||
θ̂z = -sinθ
|
||
φ̂x = -sinφ
|
||
φ̂y = cosφ
|
||
φ̂z = np.zeros(φ̂y.shape)
|
||
r̂ = np.concatenate((r̂x,r̂y,r̂z),axis=axis)
|
||
θ̂ = np.concatenate((θ̂x,θ̂y,θ̂z),axis=axis)
|
||
φ̂ = np.concatenate((φ̂x,φ̂y,φ̂z),axis=axis)
|
||
[inr̂,inθ̂,inφ̂] = np.split(loccart,3,axis=axis)
|
||
out=inr̂*r̂+inθ̂*θ̂+inφ̂*φ̂
|
||
return out
|
||
|
||
#@ujit
|
||
def sph_loccart_basis(sph, sphaxis=-1, cartaxis=None):
|
||
"""
|
||
Returns the local cartesian basis in terms of global cartesian basis.
|
||
sphaxis refers to the original dimensions
|
||
TODO doc
|
||
"""
|
||
if(cartaxis is None):
|
||
cartaxis = sph.ndim # default to last axis
|
||
[r,θ,φ] = np.split(sph,3,axis=sphaxis)
|
||
sinθ = np.sin(θ)
|
||
cosθ = np.cos(θ)
|
||
sinφ = np.sin(φ)
|
||
cosφ = np.cos(φ)
|
||
|
||
#x = r * sinθ * cosφ
|
||
#y = r * sinθ * sinφ
|
||
#z = r * cosθ
|
||
r̂x = sinθ * cosφ
|
||
r̂y = sinθ * sinφ
|
||
r̂z = cosθ
|
||
θ̂x = cosθ * cosφ
|
||
θ̂y = cosθ * sinφ
|
||
θ̂z = -sinθ
|
||
φ̂x = -sinφ
|
||
φ̂y = cosφ
|
||
φ̂z = np.zeros(φ̂y.shape)
|
||
#r̂ = np.concatenate((r̂x,r̂y,r̂z),axis=axis)
|
||
#θ̂ = np.concatenate((θ̂x,θ̂y,θ̂z),axis=axis)
|
||
#φ̂ = np.concatenate((φ̂x,φ̂y,φ̂z),axis=axis)
|
||
x = np.expand_dims(np.concatenate((r̂x,θ̂x,φ̂x), axis=sphaxis),axis=cartaxis)
|
||
y = np.expand_dims(np.concatenate((r̂y,θ̂y,φ̂y), axis=sphaxis),axis=cartaxis)
|
||
z = np.expand_dims(np.concatenate((r̂z,θ̂z,φ̂z), axis=sphaxis),axis=cartaxis)
|
||
out = np.concatenate((x,y,z),axis=cartaxis)
|
||
return out
|
||
|
||
|
||
#@jit
|
||
def nelem2lMax(nelem):
|
||
"""
|
||
Auxiliary inverse function to nelem(lMax) = (lMax + 2) * lMax. Returns 0 if
|
||
it nelem does not come from positive integer lMax.
|
||
"""
|
||
lMax = round(math.sqrt(1+nelem) - 1)
|
||
if ((lMax < 1) or ((lMax + 2) * lMax != nelem)):
|
||
return 0
|
||
else:
|
||
return lMax
|
||
|
||
def lMax2nelem(lMax):
|
||
return lMax * (lMax+2)
|
||
|
||
def lpy(nmax, z):
|
||
# TODO TRUEVECTORIZE
|
||
# TODO DOC
|
||
nelem = nmax * (nmax+2)
|
||
z = np.array(z, copy=False)
|
||
P_y = np.empty(z.shape + (nelem,), dtype=np.float_)
|
||
dP_y = np.empty(z.shape + (nelem,), dtype=np.float_)
|
||
for i in np.ndindex(z.shape):
|
||
P_y[i], dP_y[i] = lpy1(nmax, z[i])
|
||
return (P_y, dP_y)
|
||
|
||
def lpy1(nmax, z):
|
||
"""
|
||
Associated legendre function and its derivatative at z in the 'y-indexing'.
|
||
(Without Condon-Shortley phase AFAIK.)
|
||
NOT THOROUGHLY TESTED
|
||
|
||
Parameters
|
||
----------
|
||
|
||
nmax: int
|
||
The maximum order to which the Legendre functions will be evaluated..
|
||
|
||
z: float
|
||
The point at which the Legendre functions are evaluated.
|
||
|
||
output: (P_y, dP_y) TODO
|
||
y-indexed legendre polynomials and their derivatives
|
||
|
||
"""
|
||
pmn_plus, dpmn_plus = lpmn(nmax, nmax, z)
|
||
pmn_minus, dpmn_minus = lpmn(-nmax, nmax, z)
|
||
nelem = nmax * nmax + 2*nmax
|
||
P_y = np.empty((nelem,), dtype=np.float_)
|
||
dP_y = np.empty((nelem,), dtype=np.float_)
|
||
mn_p_y, mn_n_y = get_y_mn_unsigned(nmax)
|
||
mn_plus_mask = (mn_p_y >= 0)
|
||
mn_minus_mask = (mn_n_y >= 0)
|
||
#print( mn_n_y[mn_minus_mask])
|
||
P_y[mn_p_y[mn_plus_mask]] = pmn_plus[mn_plus_mask]
|
||
P_y[mn_n_y[mn_minus_mask]] = pmn_minus[mn_minus_mask]
|
||
dP_y[mn_p_y[mn_plus_mask]] = dpmn_plus[mn_plus_mask]
|
||
dP_y[mn_n_y[mn_minus_mask]] = dpmn_minus[mn_minus_mask]
|
||
return (P_y, dP_y)
|
||
|
||
def vswf_yr(pos_sph,lMax,J=1):
|
||
"""
|
||
Normalized vector spherical wavefunctions $\widetilde{M}_{mn}^{j}$,
|
||
$\widetilde{N}_{mn}^{j}$ as in [1, (2.40)].
|
||
|
||
Parameters
|
||
----------
|
||
|
||
pos_sph : np.array(dtype=float, shape=(someshape,3))
|
||
The positions where the spherical vector waves are to be
|
||
evaluated. The last axis corresponds to the individual
|
||
points (r,θ,φ). The radial coordinate r is dimensionless,
|
||
assuming that it has already been multiplied by the
|
||
wavenumber.
|
||
|
||
nmax : int
|
||
The maximum order to which the VSWFs are evaluated.
|
||
|
||
Returns
|
||
-------
|
||
|
||
output : np.array(dtype=complex, shape=(someshape,nmax*nmax + 2*nmax,3))
|
||
Spherical vector wave functions evaluated at pos_sph,
|
||
in the local basis (r̂,θ̂,φ̂). The last indices correspond
|
||
to m, n (in the ordering given by mnindex()), and basis
|
||
vector index, respectively.
|
||
|
||
[1] Jonathan M. Taylor. Optical Binding Phenomena: Observations and
|
||
Mechanisms.
|
||
"""
|
||
# TODO TRUEVECTORIZE
|
||
pos_sph = np.array(pos_sph, copy = False)
|
||
nelem = (lMax + 2) * lMax
|
||
M_y = np.empty(pos_sph.shape[:-1] + (nelem,3), dtype = np.complex_)
|
||
N_y = np.empty(pos_sph.shape[:-1] + (nelem,3), dtype = np.complex_)
|
||
for i in np.ndindex(pos_sph.shape[:-1]):
|
||
M_y[i], N_y[i] = vswf_yr1(pos_sph[i], lMax, J) # non-vectorised function
|
||
return (M_y, N_y)
|
||
|
||
#@jit
|
||
def _sph_zn_1(n,z,derivative=False):
|
||
return spherical_jn(n,z,derivative)
|
||
#@jit
|
||
def _sph_zn_2(n,z,derivative=False):
|
||
return spherical_yn(n,z,derivative)
|
||
#@jit
|
||
def _sph_zn_3(n,z,derivative=False):
|
||
besj=spherical_jn(n,z,derivative)
|
||
besy=spherical_yn(n,z,derivative)
|
||
return besj + 1j*besy
|
||
#@jit
|
||
def _sph_zn_4(n,z,derivative=False):
|
||
besj=spherical_jn(n,z,derivative)
|
||
besy=spherical_yn(n,z,derivative)
|
||
return besj + 1j*besy
|
||
_sph_zn = [_sph_zn_1,_sph_zn_2,_sph_zn_3,_sph_zn_4]
|
||
|
||
# computes bessel/hankel functions for orders from 0 up to n;
|
||
#@jit
|
||
def zJn(n, z, J=1):
|
||
return (_sph_zn[J-1](n=np.arange(n+1),z=z,derivative=False), _sph_zn[J-1](n=np.arange(n+1),z=z,derivative=True))
|
||
|
||
|
||
|
||
# The following 4 funs have to be refactored, possibly merged
|
||
|
||
# FIXME: this can be expressed simply as:
|
||
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}+\delta_{m,-1}) $$
|
||
#@ujit
|
||
def π̃_zerolim(nmax): # seems OK
|
||
"""
|
||
lim_{θ→ 0-} π̃(cos θ)
|
||
"""
|
||
my, ny = get_mn_y(nmax)
|
||
nelems = len(my)
|
||
π̃_y = np.zeros((nelems))
|
||
plus1mmask = (my == 1)
|
||
minus1mmask = (my == -1)
|
||
pluslim = -ny*(1+ny)/2
|
||
minuslim = 0.5
|
||
π̃_y[plus1mmask] = pluslim[plus1mmask]
|
||
π̃_y[minus1mmask] = - minuslim
|
||
prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my)))
|
||
π̃_y = prenorm * π̃_y
|
||
return π̃_y
|
||
|
||
#@ujit
|
||
def π̃_pilim(nmax): # Taky OK, jen to možná není kompatibilní se vzorečky z mathematiky
|
||
"""
|
||
lim_{θ→ π+} π̃(cos θ)
|
||
"""
|
||
my, ny = get_mn_y(nmax)
|
||
nelems = len(my)
|
||
π̃_y = np.zeros((nelems))
|
||
plus1mmask = (my == 1)
|
||
minus1mmask = (my == -1)
|
||
pluslim = (-1)**ny*ny*(1+ny)/2
|
||
minuslim = 0.5*(-1)**ny
|
||
π̃_y[plus1mmask] = pluslim[plus1mmask]
|
||
π̃_y[minus1mmask] = minuslim[minus1mmask]
|
||
prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my)))
|
||
π̃_y = prenorm * π̃_y
|
||
return π̃_y
|
||
|
||
# FIXME: this can be expressed simply as
|
||
# $$ -\frac{1}{2}\sqrt{\frac{2n+1}{4\pi}n\left(n+1\right)}(\delta_{m,1}-\delta_{m,-1}) $$
|
||
#@ujit
|
||
def τ̃_zerolim(nmax):
|
||
"""
|
||
lim_{θ→ 0-} τ̃(cos θ)
|
||
"""
|
||
p0 = π̃_zerolim(nmax)
|
||
my, ny = get_mn_y(nmax)
|
||
minus1mmask = (my == -1)
|
||
p0[minus1mmask] = -p0[minus1mmask]
|
||
return p0
|
||
|
||
#@ujit
|
||
def τ̃_pilim(nmax):
|
||
"""
|
||
lim_{θ→ π+} τ̃(cos θ)
|
||
"""
|
||
t = π̃_pilim(nmax)
|
||
my, ny = get_mn_y(nmax)
|
||
plus1mmask = (my == 1)
|
||
t[plus1mmask] = -t[plus1mmask]
|
||
return t
|
||
|
||
#@ujit
|
||
def get_π̃τ̃_y1(θ,nmax):
|
||
# TODO replace with the limit functions (below) when θ approaches
|
||
# the extreme values at about 1e-6 distance
|
||
"""
|
||
(... TODO)
|
||
|
||
"""
|
||
if (abs(θ)<1e-6):
|
||
return (π̃_zerolim(nmax),τ̃_zerolim(nmax))
|
||
if (abs(θ-π)<1e-6):
|
||
return (π̃_pilim(nmax),τ̃_pilim(nmax))
|
||
my, ny = get_mn_y(nmax)
|
||
nelems = len(my)
|
||
Py, dPy = lpy(nmax, math.cos(θ))
|
||
prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my)))
|
||
π̃_y = prenorm * my * Py / math.sin(θ) # bacha, možné dělení nulou
|
||
τ̃_y = prenorm * dPy * (- math.sin(θ)) # TADY BACHA!!!!!!!!!! * (- math.sin(pos_sph[1])) ???
|
||
return (π̃_y,τ̃_y)
|
||
|
||
#@ujit
|
||
def vswf_yr1(pos_sph,nmax,J=1):
|
||
"""
|
||
As vswf_yr, but evaluated only at single position (i.e. pos_sph has
|
||
to have shape=(3))
|
||
"""
|
||
if (pos_sph[1].imag or pos_sph[2].imag):
|
||
raise ValueError("The angles for the spherical wave functions can not be complex")
|
||
kr = pos_sph[0] if pos_sph[0].imag else pos_sph[0].real # To supress the idiotic warning in scipy.special.sph_jn
|
||
θ = pos_sph[1].real
|
||
φ = pos_sph[2].real
|
||
my, ny = get_mn_y(nmax)
|
||
Py, dPy = lpy(nmax, math.cos(θ))
|
||
nelems = nmax*nmax + 2*nmax
|
||
# TODO Remove these two lines in production:
|
||
if(len(Py) != nelems or len(my) != nelems):
|
||
raise ValueError("This is very wrong.")
|
||
prenorm = np.sqrt((2*ny + 1)*factorial(ny-my)/(4*π*factorial(ny+my)))
|
||
if (abs(θ)<1e-6): # Ošetření limitního chování derivací Leg. fcí
|
||
π̃_y=π̃_zerolim(nmax)
|
||
τ̃_y=τ̃_zerolim(nmax)
|
||
elif (abs(θ-π)<1e-6):
|
||
π̃_y=π̃_pilim(nmax)
|
||
τ̃_y=τ̃_pilim(nmax)
|
||
else:
|
||
π̃_y = prenorm * my * Py / math.sin(θ)
|
||
τ̃_y = prenorm * dPy * (- math.sin(θ)) # TADY BACHA!!!!!!!!!! * (- math.sin(pos_sph[1])) ???
|
||
z_n, dz_n = zJn(nmax, kr, J=J)
|
||
z_y = z_n[ny]
|
||
dz_y = dz_n[ny]
|
||
eimf_y = np.exp(1j*my*φ) # zbytečné opakování my, lepší by bylo to spočítat jednou a vyindexovat
|
||
M̃_y = np.zeros((nelems,3), dtype=np.complex_)
|
||
M̃_y[:,1] = 1j * π̃_y * eimf_y * z_y
|
||
M̃_y[:,2] = - τ̃_y * eimf_y * z_y
|
||
Ñ_y = np.empty((nelems,3), dtype=np.complex_)
|
||
Ñ_y[:,0] = (ny*(ny+1)/kr) * prenorm * Py * eimf_y * z_y
|
||
Ñradial_fac_y = z_y / kr + dz_y
|
||
Ñ_y[:,1] = τ̃_y * eimf_y * Ñradial_fac_y
|
||
Ñ_y[:,2] = 1j*π̃_y * eimf_y * Ñradial_fac_y
|
||
return(M̃_y, Ñ_y)
|
||
|
||
#def plane_E_y(nmax):
|
||
# """
|
||
# The E_mn normalization factor as in [1, (3)] WITHOUT the E_0 factor,
|
||
# y-indexed
|
||
#
|
||
# (... TODO)
|
||
#
|
||
# References
|
||
# ----------
|
||
# [1] Jonathan M. Taylor. Optical Binding Phenomena: Observations and
|
||
# Mechanisms. FUCK, I MADE A MISTAKE: THIS IS FROM 7U
|
||
# """
|
||
# my, ny = get_mn_y(nmax)
|
||
# return 1j**ny * np.sqrt((2*ny+1)*factorial(ny-my) /
|
||
# (ny*(ny+1)*factorial(ny+my))
|
||
# )
|
||
#@ujit
|
||
def zplane_pq_y(nmax, betap = 0):
|
||
"""
|
||
The z-propagating plane wave expansion coefficients as in [1, (1.12)]
|
||
|
||
Taylor's normalization
|
||
|
||
(... TODO)
|
||
"""
|
||
my, ny = get_mn_y(nmax)
|
||
U_y = 4*π * 1j**ny / (ny * (ny+1))
|
||
π̃_y = π̃_zerolim(nmax)
|
||
τ̃_y = τ̃_zerolim(nmax)
|
||
|
||
# fixme co je zač ten e_θ ve vzorečku? (zde neimplementováno)
|
||
p_y = U_y*(τ̃_y*math.cos(betap) - 1j*math.sin(betap)*π̃_y)
|
||
q_y = U_y*(π̃_y*math.cos(betap) - 1j*math.sin(betap)*τ̃_y)
|
||
return (p_y, q_y)
|
||
|
||
|
||
#import warnings
|
||
#@ujit
|
||
def plane_pq_y(nmax, kdir_cart, E_cart):
|
||
"""
|
||
The plane wave expansion coefficients for any direction kdir_cart
|
||
and amplitude vector E_cart (which might be complex, depending on
|
||
the phase and polarisation state). If E_cart and kdir_cart are
|
||
not orthogonal, the result should correspond to the k-normal part
|
||
of E_cart.
|
||
|
||
The Taylor's convention on the expansion is used; therefore,
|
||
the electric field is expressed as
|
||
E(r) = E_cart * exp(1j * k ∙ r)
|
||
= -1j * ∑_y ( p_y * Ñ_y(|k| * r) + q_y * M̃_y(|k| * r))
|
||
(note the -1j factor).
|
||
|
||
Parameters
|
||
----------
|
||
nmax: int
|
||
The order of the expansion.
|
||
kdir_cart: (...,3)-shaped real array
|
||
The wave vector (its magnitude does not play a role).
|
||
E_cart: (...,3)-shaped complex array
|
||
Amplitude of the plane wave
|
||
|
||
Returns
|
||
-------
|
||
p_y, q_y:
|
||
The expansion coefficients for the electric (Ñ) and magnetic
|
||
(M̃) waves, respectively.
|
||
"""
|
||
# TODO TRUEVECTORIZE
|
||
if np.iscomplexobj(kdir_cart):
|
||
warnings.warn("The direction vector for the plane wave coefficients should be real. I am discarding the imaginary part now.")
|
||
kdir_cart = kdir_cart.real
|
||
|
||
E_cart = np.array(E_cart, copy=False)
|
||
k_sph = cart2sph(kdir_cart)
|
||
my, ny = get_mn_y(nmax)
|
||
nelem = len(my)
|
||
U_y = 4*π * 1j**ny / (ny * (ny+1))
|
||
θ̂ = sph_loccart2cart(np.array([0,1,0]), k_sph, axis=-1)
|
||
φ̂ = sph_loccart2cart(np.array([0,0,1]), k_sph, axis=-1)
|
||
|
||
# not properly vectorised part:
|
||
π̃_y = np.empty(k_sph.shape[:-1] + (nelem,), dtype=np.complex_)
|
||
τ̃_y = np.empty(π̃_y.shape, dtype=np.complex_)
|
||
for i in np.ndindex(k_sph.shape[:-1]):
|
||
π̃_y[i], τ̃_y[i] = get_π̃τ̃_y1(k_sph[i][1], nmax) # this shit is not vectorised
|
||
|
||
# last indices of the summands: [...,y,local cartesian component index (of E)]
|
||
p_y = np.sum( U_y[...,:,ň]
|
||
* np.conj(np.exp(1j*my[...,:,ň]*k_sph[...,ň,ň,2]) * (
|
||
θ̂[...,ň,:]*τ̃_y[...,:,ň] + 1j*φ̂[...,ň,:]*π̃_y[...,:,ň]))
|
||
* E_cart[...,ň,:],
|
||
axis=-1)
|
||
q_y = np.sum( U_y[...,:,ň]
|
||
* np.conj(np.exp(1j*my[...,:,ň]*k_sph[...,ň,ň,2]) * (
|
||
θ̂[...,ň,:]*π̃_y[...,:,ň] + 1j*φ̂[...,ň,:]*τ̃_y[...,:,ň]))
|
||
* E_cart[...,ň,:],
|
||
axis=-1)
|
||
return (p_y, q_y)
|
||
|
||
|
||
|
||
|
||
# Material parameters
|
||
#@ujit
|
||
def ε_drude(ε_inf, ω_p, γ_p, ω): # RELATIVE permittivity, of course
|
||
return ε_inf - ω_p*ω_p/(ω*(ω+1j*γ_p))
|
||
|
||
|
||
# In[8]:
|
||
|
||
# Mie scattering
|
||
#@ujit
|
||
def mie_coefficients(a, nmax, #ω, ε_i, ε_e=1, J_ext=1, J_scat=3
|
||
k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
|
||
"""
|
||
|
||
FIXME test the magnetic case
|
||
TODO description
|
||
RH concerns the N ("electric") part, RV the M ("magnetic") part
|
||
#
|
||
|
||
Parameters
|
||
----------
|
||
a : float
|
||
Diameter of the sphere.
|
||
|
||
nmax : int
|
||
To which order (inc. nmax) to compute the coefficients.
|
||
|
||
ω : float
|
||
Frequency of the radiation
|
||
|
||
ε_i, ε_e, μ_i, μ_e : complex
|
||
Relative permittivities and permeabilities of the sphere (_i)
|
||
and the environment (_e)
|
||
MAGNETIC (μ_i, μ_e != 1) CASE UNTESTED AND PROBABLY BUGGY
|
||
|
||
J_ext, J_scat : 1, 2, 3, or 4 (must be different)
|
||
Specifies the species of the Bessel/Hankel functions in which
|
||
the external incoming (J_ext) and scattered (J_scat) fields
|
||
are represented. 1,2,3,4 correspond to j,y,h(1),h(2), respectively.
|
||
The returned coefficients are always with respect to the decomposition
|
||
of the "external incoming" wave.
|
||
|
||
Returns
|
||
-------
|
||
RV == a/p, RH == b/q, TV = d/p, TH = c/q
|
||
TODO
|
||
what does it return on index 0???
|
||
FIXME permeabilities
|
||
"""
|
||
# permittivities are relative!
|
||
# cf. worknotes
|
||
#print("a, nmax, ε_m, ε_b, ω",a, nmax, ε_m, ε_b, ω)
|
||
#k_i = cmath.sqrt(ε_i*μ_i) * ω / c
|
||
x_i = k_i * a
|
||
#k_e = cmath.sqrt(ε_e*μ_e) * ω / c
|
||
x_e = k_e * a
|
||
#print("Mie: phase at radius: x_i",x_i,"x_e",x_e)
|
||
m = k_i/k_e#cmath.sqrt(ε_i*μ_i/(ε_e*μ_e))
|
||
# We "need" the absolute permeabilities for the final formula
|
||
# This is not the absolute wave impedance, because only their ratio
|
||
# ηi/ηe is important for getting the Mie coefficients.
|
||
η_inv_i = k_i / μ_i
|
||
η_inv_e = k_e / μ_e
|
||
#print("k_m, x_m,k_b,x_b",k_m, x_m,k_b,x_b)
|
||
zi, ži = zJn(nmax, x_i, J=1)
|
||
#Pi = (zi * x_i)
|
||
#Di = (zi + x_i * ži) / Pi # Vzoreček Taylor (2.9)
|
||
#ži = zi + x_i * ži
|
||
ze, že = zJn(nmax, x_e, J=J_ext)
|
||
#Pe = (ze * x_e)
|
||
#De = (ze + x_e * že) / Pe # Vzoreček Taylor (2.9)
|
||
#že = ze + x_e * že
|
||
zs, žs = zJn(nmax, x_e, J=J_scat)
|
||
#Ps = (zs * x_e)
|
||
#Ds = (zs + x_e * žs) / Ps # Vzoreček Taylor (2.9)
|
||
#žs = zs + x_e * zs
|
||
#RH = (μ_i*zi*že - μ_e*ze*ži) / (μ_i*zi*žs - μ_e*zs*ži)
|
||
#RV = (μ_e*m*m*zi*že - μ_i*ze*ži) / (μ_e*m*m*zi*žs - μ_i*zs*ži)
|
||
#TH = (μ_i*ze*žs - μ_i*zs*že) / (μ_i*zi*žs - μ_e*zs*ži)
|
||
#TV = (μ_i*m*ze*žs - μ_i*m*zs*že) / (μ_e*m*m*zi*žs - μ_i*zs*ži)
|
||
ži = zi/x_i+ži
|
||
žs = zs/x_e+žs
|
||
že = ze/x_e+že
|
||
RV = -((-η_inv_i * že * zi + η_inv_e * ze * ži)/(-η_inv_e * ži * zs + η_inv_i * zi * žs))
|
||
RH = -((-η_inv_e * že * zi + η_inv_i * ze * ži)/(-η_inv_i * ži * zs + η_inv_e * zi * žs))
|
||
TV = -((-η_inv_e * že * zs + η_inv_e * ze * žs)/( η_inv_e * ži * zs - η_inv_i * zi * žs))
|
||
TH = -(( η_inv_e * že * zs - η_inv_e * ze * žs)/(-η_inv_i * ži * zs + η_inv_e * zi * žs))
|
||
return (RH, RV, TH, TV)
|
||
|
||
#@ujit
|
||
def G_Mie_scat_precalc_cart_new(source_cart, dest_cart, RH, RV, a, nmax, k_i, k_e, μ_i=1, μ_e=1, J_ext=1, J_scat=3):
|
||
"""
|
||
Implementation according to Kristensson, page 50
|
||
My (Taylor's) basis functions are normalized to n*(n+1), whereas Kristensson's to 1
|
||
TODO: check possible -1 factors (cf. Kristensson's dagger notation)
|
||
"""
|
||
my, ny = get_mn_y(nmax)
|
||
nelem = len(my)
|
||
#source to origin
|
||
source_sph = cart2sph(source_cart)
|
||
source_sph[0] = k_e * source_sph[0]
|
||
dest_sph = cart2sph(dest_cart)
|
||
dest_sph[0] = k_e * dest_sph[0]
|
||
if(dest_sph[0].real >= source_sph[0].real):
|
||
lo_sph = source_sph
|
||
hi_sph = dest_sph
|
||
else:
|
||
lo_sph = dest_sph
|
||
hi_sph = source_sph
|
||
lo_sph = source_sph
|
||
hi_sph = dest_sph
|
||
|
||
M̃lo_y, Ñlo_y = vswf_yr1(lo_sph,nmax,J=J_scat)
|
||
lo_loccart_basis = sph_loccart_basis(lo_sph, sphaxis=-1, cartaxis=None)
|
||
M̃lo_cart_y = np.sum(M̃lo_y[:,:,ň]*lo_loccart_basis[ň,:,:],axis=-2)
|
||
Ñlo_cart_y = np.sum(Ñlo_y[:,:,ň]*lo_loccart_basis[ň,:,:],axis=-2)
|
||
|
||
M̃hi_y, Ñhi_y = vswf_yr1(hi_sph,nmax,J=J_scat)#J_scat
|
||
hi_loccart_basis = sph_loccart_basis(hi_sph, sphaxis=-1, cartaxis=None)
|
||
M̃hi_cart_y = np.sum(M̃hi_y[:,:,ň]*hi_loccart_basis[ň,:,:],axis=-2)
|
||
Ñhi_cart_y = np.sum(Ñhi_y[:,:,ň]*hi_loccart_basis[ň,:,:],axis=-2)
|
||
|
||
G_y = (RH[ny][:,ň,ň] * M̃lo_cart_y[:,:,ň].conj() * M̃hi_cart_y[:,ň,:] +
|
||
RV[ny][:,ň,ň] * Ñlo_cart_y[:,:,ň].conj() * Ñhi_cart_y[:,ň,:]) / (ny * (ny+1))[:,ň,ň]
|
||
return 1j* k_e*np.sum(G_y,axis=0)
|
||
|
||
|
||
# From PRL 112, 253601 (1)
|
||
#@ujit
|
||
def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
|
||
om = k * c
|
||
z = (r-a)/a
|
||
g0 = om*cmath.sqrt(ε_b)/(6*c*π)
|
||
n = np.arange(1,nmax+1)
|
||
s = np.sum( (n+1)**2 * (ε_m-ε_b) / ((1+z)**(2*n+4) * (ε_m + ((n+1)/n)*ε_b)))
|
||
return (g0 + s * c**2/(4*π*om**2*ε_b*a**3))
|
||
|
||
|
||
|
||
# TODOs
|
||
# ====
|
||
#
|
||
# Rewrite the functions zJn, lpy in (at least simulated) universal manner.
|
||
# Then universalise the rest
|
||
#
|
||
# Implement the actual multiple scattering
|
||
#
|
||
# Test if the decomposition of plane wave works also for absorbing environment (complex k).
|
||
|
||
# From PRL 112, 253601 (1)
|
||
#@ujit
|
||
def Grr_Delga(nmax, a, r, k, ε_m, ε_b):
|
||
om = k * c
|
||
z = (r-a)/a
|
||
g0 = om*cmath.sqrt(ε_b)/(6*c*π)
|
||
n = np.arange(1,nmax+1)
|
||
s = np.sum( (n+1)**2 * (ε_m-ε_b) / ((1+z)**(2*n+4) * (ε_m + ((n+1)/n)*ε_b)))
|
||
return (g0 + s * c**2/(4*π*om**2*ε_b*a**3))
|
||
|
||
#@ujit
|
||
def G0_dip_1(r_cart,k):
|
||
"""
|
||
Free-space dyadic Green's function in terms of the spherical vector waves.
|
||
FIXME
|
||
"""
|
||
sph = cart2sph(r_cart*k)
|
||
pfz = 0.32573500793527994772 # 1./math.sqrt(3.*π)
|
||
pf = 0.23032943298089031951 # 1./math.sqrt(6.*π)
|
||
M1_y, N1_y = vswf_yr1(sph,nmax = 1,J=3)
|
||
loccart_basis = sph_loccart_basis(sph, sphaxis=-1, cartaxis=None)
|
||
N1_cart = np.sum(N1_y[:,:,ň]*loccart_basis[ň,:,:],axis=-2)
|
||
coeffs_cart = np.array([[pf,-1j*pf,0.],[0.,0.,pfz],[-pf,-1j*pf,0.]]).conj()
|
||
return 1j*k*np.sum(coeffs_cart[:,:,ň]*N1_cart[:,ň,:],axis=0)/2.
|
||
|
||
# Free-space dyadic Green's functions from RMP 70, 2, 447 =: [1]
|
||
# (The numerical value is correct only at the regular part, i.e. r != 0)
|
||
#@ujit
|
||
def _P(z):
|
||
return (1-1/z+1/(z*z))
|
||
#@ujit
|
||
def _Q(z):
|
||
return (-1+3/z-3/(z*z))
|
||
|
||
# [1, (9)] FIXME The sign here is most likely wrong!!!
|
||
#@ujit
|
||
def G0_analytical(r #cartesian!
|
||
, k):
|
||
I=np.identity(3)
|
||
rn = sph_loccart2cart(np.array([1.,0.,0.]), cart2sph(r), axis=-1)
|
||
rnxrn = rn[...,:,ň] * rn[...,ň,:]
|
||
r = np.linalg.norm(r, axis=-1)
|
||
#print(_P(1j*k*r).shape,_Q(1j*k*r).shape, rnxrn.shape, I.shape)
|
||
return ((-np.exp(1j*k*r)/(4*π*r))[...,ň,ň] *
|
||
(_P(1j*k*r)[...,ň,ň]*I
|
||
+_Q(1j*k*r)[...,ň,ň]*rnxrn
|
||
))
|
||
|
||
# [1, (11)]
|
||
#@ujit
|
||
def G0L_analytical(r, k):
|
||
I=np.identity(3)
|
||
rn = sph_loccart2cart(np.array([1.,0.,0.]), cart2sph(r), axis=-1)
|
||
rnxrn = rn[...,:,ň] * rn[...,ň,:]
|
||
r = np.linalg.norm(r, axis=-1)
|
||
return (I-3*rnxrn)/(4*π*k*k*r**3)[...,ň,ň]
|
||
|
||
# [1,(10)]
|
||
#@jit
|
||
def G0T_analytical(r, k):
|
||
return G0_analytical(r,k) - G0L_analytical(r,k)
|
||
|
||
#@ujit
|
||
def G0_sum_1_slow(source_cart, dest_cart, k, nmax):
|
||
my, ny = get_mn_y(nmax)
|
||
nelem = len(my)
|
||
RH = np.full((nelem),1)
|
||
RV = RH
|
||
return G_Mie_scat_precalc_cart(source_cart, dest_cart, RH, RV, a=0.001, nmax=nmax, k_i=1, k_e=k, μ_i=1, μ_e=1, J_ext=1, J_scat=3)
|
||
|
||
|
||
def loadWfile(fileName, lMax = None, fatForm = True, nparticles = 2):
|
||
'''
|
||
Load the translation operator lattice sums generated by hexlattice_ewald.c
|
||
fatForm has different indices (so that it can be easily multiplied with T-Matrix
|
||
and twice the size.
|
||
'''
|
||
#nparticles = 2 # TODO generalize
|
||
um = 1e-6 # micrometer in SI units
|
||
data = np.loadtxt(fileName)
|
||
nsamples = data.shape[0]
|
||
Wdata = data[:,5:]
|
||
if (lMax is None):
|
||
nelem = int((Wdata.shape[1]/nparticles**2)**.5/2)
|
||
lMax = nelem2lMax(nelem)
|
||
else:
|
||
nelem = lMax2nelem(lMax)
|
||
Ws = Wdata[:,::2] + 1j*Wdata[:,1::2]
|
||
# indices: destparticle, srcparticle, wavetype, desty, srcy
|
||
Ws.shape = (nsamples, nparticles, nparticles, 2, nelem, nelem)
|
||
# maybe TODO copy the following so the original data gets freed to save memory
|
||
freqs_weirdunits = np.array(data[:,0], copy=True)
|
||
k0s = np.array(data[:,2], copy=True)
|
||
ks = np.array(data[:,3:5], copy=True)
|
||
freqs = freqs_weirdunits * c / um
|
||
if fatForm: #indices: (...,) destparticle, desttype, desty, srcparticle, srctype, srcy
|
||
Ws2 = np.moveaxis(Ws, [-5,-4,-3,-2,-1], [-4,-2,-5,-3,-1] )
|
||
fatWs = np.empty(Ws2.shape[:-5]+(nparticles, 2,nelem, nparticles, 2, nelem),dtype=complex)
|
||
fatWs[...,:,0,:,:,0,:] = Ws2[...,0,:,:,:,:] #A
|
||
fatWs[...,:,1,:,:,1,:] = Ws2[...,0,:,:,:,:] #A
|
||
fatWs[...,:,1,:,:,0,:] = Ws2[...,1,:,:,:,:] #B
|
||
fatWs[...,:,0,:,:,1,:] = Ws2[...,1,:,:,:,:] #B
|
||
Ws = fatWs
|
||
return {
|
||
'lMax' : lMax,
|
||
'nelem' : nelem,
|
||
'npart' : nparticles,
|
||
'freqs' : freqs,
|
||
'ks' : ks,
|
||
'k0_effs' : k0s,
|
||
'Ws' : Ws,
|
||
'freqs_weirdunits' : freqs_weirdunits,
|
||
}
|
||
|
||
def processWfiles_sameKs(freqfilenames, destfilename, nparticles = 2, lMax = None, f='npz'):
|
||
'''
|
||
Processes translation operator data in different files; each file is supposed to contain one frequency.
|
||
The Ks in the different files are expected to be exactly the same and in the same order;
|
||
the result is sorted by frequencies and saved to npz file;
|
||
The representation is always "thin", i.e. the elements which are zero due to z-symmetry are skipped
|
||
F is either 'npz' or 'd'
|
||
'npz' creates npz archive, 'd' creates a directory with individual npy files, where the W-matrix data
|
||
are writen using memmap.
|
||
'''
|
||
|
||
if (nparticles is None):
|
||
# TODO here read nparticles from file;
|
||
raise # NOT IMPLEMENTED
|
||
|
||
um = 1e-6 # micrometre in SI units
|
||
|
||
nfiles = len(freqfilenames)
|
||
|
||
if (nfiles < 1): return ValueError("At least one filename has to be passed")
|
||
|
||
#Check the first file to get the "constants" set
|
||
filename = freqfilenames[0]
|
||
data = np.loadtxt(filename, ndmin = 2)
|
||
nk_muster = data.shape[0]
|
||
Wdata = data[...,5:]
|
||
|
||
if (lMax is None):
|
||
nelem = int((Wdata.shape[1]/nparticles**2)**.5/2)
|
||
lMax = nelem2lMax(nelem)
|
||
else:
|
||
nelem = lMax2nelem(lMax)
|
||
ks_muster = np.array(data[...,3:5], copy=True)
|
||
|
||
if f == 'npz':
|
||
allWs = np.empty((nfiles, nk_muster, nparticles, nparticles, 2, nelem, nelem,), dtype=complex)
|
||
elif f == 'd':
|
||
j = os.path.join
|
||
d = destfilename
|
||
try:
|
||
os.mkdir(destfilename)
|
||
except FileExistsError as exc:
|
||
pass
|
||
allWs = np.lib.format.open_memmap(filename=j(d,"Wdata.npy"), dtype=complex, shape=(nfiles, nk_muster, nparticles, nparticles,2,nelem,nelem,),mode='w+')
|
||
else: raise ValueError("f has to be either 'npz' or 'd'")
|
||
k0s = np.empty((nfiles,))
|
||
freqs_weirdunits = np.empty((nfiles,))
|
||
EeVs = np.empty((nfiles,))
|
||
succread = 0
|
||
|
||
for filename in freqfilenames:
|
||
data = np.loadtxt(filename, ndmin=2)
|
||
if data.shape[0] != nk_muster:
|
||
raise ValueError("%s contains different number of lines than %s"%(filename, freqfilenames[0]))
|
||
ks_current = np.array(data[:,3:5])
|
||
if not np.all(ks_current == ks_muster):
|
||
raise ValueError("%s contains different k-vectors than %s"%(filename, freqfilenames[0]))
|
||
curWdata = data[...,5:]
|
||
curWs = curWdata[...,::2] + 1j*curWdata[...,1::2]
|
||
curWs.shape = (nk_muster, nparticles, nparticles, 2, nelem, nelem)
|
||
allWs[succread] = curWs
|
||
cur_freqs_weirdunits = np.array(data[:,0])
|
||
if not np.all(cur_freqs_weirdunits == cur_freqs_weirdunits[0]):
|
||
raise ValueError("%s contains various frequencies; we require only one frequency per file"%(filename))
|
||
freqs_weirdunits[succread] = cur_freqs_weirdunits[0]
|
||
k0s[succread] = data[0,2] # TODO check this as well?
|
||
EeVs[succread] = data[0,1]
|
||
succread += 1
|
||
del allWs
|
||
freqs = freqs_weirdunits * c / um
|
||
|
||
if f == 'npz':
|
||
np.savez(destfilename,
|
||
lMax = lMax,
|
||
nelem = nelem,
|
||
npart = nparticles,
|
||
nfreqs = succread,
|
||
nk = nk_muster,
|
||
freqs = freqs[:succread],
|
||
freqs_weirdunits = freqs_weirdunits[:succread],
|
||
EeVs_orig = EeVs[:succread],
|
||
k0s = k0s[:succread],
|
||
ks = ks_muster,
|
||
Wdata = allWs[:succread]
|
||
)
|
||
elif f == 'd':
|
||
np.save(j(d,'lMax.npy'), lMax)
|
||
np.save(j(d,'nelem.npy'), nelem)
|
||
np.save(j(d,'npart.npy'), nparticles)
|
||
np.save(j(d,'nfreqs.npy'), succread)
|
||
np.save(j(d,'nk.npy'), nk_muster)
|
||
np.save(j(d,'freqs.npy'), freqs[:succread])
|
||
np.save(j(d,'freqs_weirdunits.npy'), freqs_weirdunits[:succread])
|
||
np.save(j(d,'EeVs_orig.npy'), EeVs[:succread])
|
||
np.save(j(d,'k0s.npy'), k0s[:succread])
|
||
np.save(j(d,'ks.npy'), ks_muster)
|
||
# Wdata already saved
|
||
return
|
||
|
||
|
||
def loadWfile_info(fileName, lMax = None, midk_halfwidth = None, freqlimits = None):
|
||
"""
|
||
Returns all the relevant data from the W file except for the W values themselves
|
||
"""
|
||
slovnik = loadWfile_processed(fileName, lMax = lMax, fatForm = False, midk_halfwidth=midk_halfwidth, freqlimits=freqlimits)
|
||
slovnik['Ws'] = None
|
||
return slovnik
|
||
|
||
def loadWfile_processed(fileName, lMax = None, fatForm = True, midk_halfwidth = None, midk_index = None, freqlimits = None, iteratechunk = None):
|
||
"""
|
||
midk_halfwidth: int
|
||
if given, takes only the "middle" k-value by index nk//2 and midk_halfwidth values from both sides
|
||
midk_index: int
|
||
if given, midk_index is taken as the "middle" value instad of nk//2
|
||
freqlimit: pair of doubles;
|
||
if given, only the values from the given frequency range (in Hz) are returned to save RAM
|
||
N.B.: the frequencies in the processed file are expected to be sorted!
|
||
iteratechunk: positive int ; NI
|
||
if given, this works as a generator with only iteratechunk frequencies processed and returned at each iteration to save memory
|
||
"""
|
||
if os.path.isdir(fileName): # .npy files in a directory
|
||
p = fileName
|
||
j = os.path.join
|
||
nk = np.load(j(p,'nk.npy'))[()]
|
||
nfreqs = np.load(j(p,'nfreqs.npy'))[()]
|
||
nparticles = np.load(j(p,'npart.npy'))[()]
|
||
Ws = np.load(j(p,'Wdata.npy'), mmap_mode='r')
|
||
ks = np.load(j(p,'ks.npy'))
|
||
freqs = np.load(j(p,'freqs.npy'))
|
||
k0s = np.load(j(p,'k0s.npy'))
|
||
EeVs_orig = np.load(j(p,'EeVs_orig.npy'))
|
||
freqs_weirdunits = np.load(j(p,'freqs_weirdunits.npy'))
|
||
else: # npz file
|
||
data = np.load(fileName, mmap_mode='r')
|
||
nk = data['nk'][()]
|
||
nfreqs = data['nfreqs'][()]
|
||
nparticles = data['npart'][()]
|
||
Ws = data['Wdata']
|
||
ks = data['ks']
|
||
freqs = data['freqs']
|
||
k0s = data['k0s']
|
||
EeVs_orig = data['EeVs_orig']
|
||
freqs_weirdunits = data['freqs_weirdunits']
|
||
if midk_halfwidth is not None:
|
||
k_mid_i = nk // 2 if midk_index is None else midk_index
|
||
maxk_i = min(k_mid_i + midk_halfwidth, nk)
|
||
mink_i = max(0, k_mid_i - midk_halfwidth)
|
||
nk = maxk_i + 1 - mink_i
|
||
Ws = Ws[:,mink_i:(maxk_i+1)]
|
||
ks = ks[mink_i:(maxk_i+1)]
|
||
#k_mid_i_new = k_mid_i - mink_i
|
||
if lMax is not None:
|
||
nelem = lMax2nelem(lMax)
|
||
Ws = Ws[...,:nelem,:nelem]
|
||
else:
|
||
lMax = data['lMax'][()]
|
||
nelem = lMax2nelem(lMax)
|
||
if freqlimits is not None:
|
||
minind = np.searchsorted(freqs, freqlimits[0], side='left')
|
||
maxind = np.searchsorted(freqs, freqlimits[1], side='right')
|
||
freqs = freqs[minind:maxind]
|
||
Ws = Ws[minind:maxind]
|
||
k0s = k0s[minind:maxind]
|
||
EeVs_orig = EeVs_orig[minind:maxind]
|
||
freqs_weirdunints = freqs_weirdunits[minind:maxind]
|
||
nfreqs = maxind-minind
|
||
if iteratechunk is None: # everyting at once
|
||
if fatForm: #indices: (...,) destparticle, desttype, desty, srcparticle, srctype, srcy
|
||
Ws2 = np.moveaxis(Ws, [-5,-4,-3,-2,-1], [-4,-2,-5,-3,-1] )
|
||
fatWs = np.empty(Ws2.shape[:-5]+(nparticles, 2,nelem, nparticles, 2, nelem),dtype=complex)
|
||
fatWs[...,:,0,:,:,0,:] = Ws2[...,0,:,:,:,:] #A
|
||
fatWs[...,:,1,:,:,1,:] = Ws2[...,0,:,:,:,:] #A
|
||
fatWs[...,:,1,:,:,0,:] = Ws2[...,1,:,:,:,:] #B
|
||
fatWs[...,:,0,:,:,1,:] = Ws2[...,1,:,:,:,:] #B
|
||
Ws = fatWs
|
||
return{
|
||
'lMax': lMax,
|
||
'nelem': nelem,
|
||
'npart': nparticles,
|
||
'nfreqs': nfreqs,
|
||
'nk' : nk,
|
||
'freqs': freqs,
|
||
'freqs_weirdunits': freqs_weirdunits,
|
||
'EeVs_orig': EeVs_orig,
|
||
'k0s': k0s,
|
||
'ks': ks,
|
||
'Ws': Ws,
|
||
}
|
||
else:
|
||
def gen(lMax, nelem, nparticles, nfreqs, nk, freqs, freqs_weirdunits, EeVs_orig, k0s, ks, Ws, iteratechunk):
|
||
starti = 0
|
||
while(starti < nfreqs):
|
||
stopi = min(starti+iteratechunk, nfreqs)
|
||
chunkWs = Ws[starti:stopi]
|
||
if fatForm: #indices: (...,) destparticle, desttype, desty, srcparticle, srctype, srcy
|
||
Ws2 = np.moveaxis(chunkWs, [-5,-4,-3,-2,-1], [-4,-2,-5,-3,-1] )
|
||
fatWs = np.empty(Ws2.shape[:-5]+(nparticles, 2,nelem, nparticles, 2, nelem),dtype=complex)
|
||
fatWs[...,:,0,:,:,0,:] = Ws2[...,0,:,:,:,:] #A
|
||
fatWs[...,:,1,:,:,1,:] = Ws2[...,0,:,:,:,:] #A
|
||
fatWs[...,:,1,:,:,0,:] = Ws2[...,1,:,:,:,:] #B
|
||
fatWs[...,:,0,:,:,1,:] = Ws2[...,1,:,:,:,:] #B
|
||
chunkWs = fatWs
|
||
yield {
|
||
'lMax': lMax,
|
||
'nelem': nelem,
|
||
'npart': nparticles,
|
||
'nfreqs': stopi-starti,
|
||
'nk' : nk,
|
||
'freqs': freqs[starti:stopi],
|
||
'freqs_weirdunits': freqs_weirdunits[starti:stopi],
|
||
'EeVs_orig': EeVs_orig[starti:stopi],
|
||
'k0s': k0s[starti:stopi],
|
||
'ks': ks,
|
||
'Ws': chunkWs,
|
||
'chunk_range': (starti, stopi),
|
||
'nfreqs_total': nfreqs
|
||
}
|
||
starti += iteratechunk
|
||
return gen(lMax, nelem, nparticles, nfreqs, nk, freqs, freqs_weirdunits, EeVs_orig, k0s, ks, Ws, iteratechunk)
|
||
|
||
|
||
|