qpms/qpms/bessel.c

122 lines
4.0 KiB
C

#include <assert.h>
#include "qpms_specfunc.h"
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include "kahansum.h"
#include <gsl/gsl_sf_bessel.h>
#include <complex.h>
#ifndef M_LN2
#define M_LN2 0.69314718055994530942 /* log_e 2 */
#endif
static inline complex double ipow(int x) {
return cpow(I,x);
}
// There is a big issue with gsl's precision of spherical bessel function; these have to be implemented differently
qpms_errno_t qpms_sph_bessel_fill(qpms_bessel_t typ, qpms_l_t lmax, double x, complex double *result_array) {
int retval;
double tmparr[lmax+1];
switch(typ) {
case QPMS_BESSEL_REGULAR:
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
return retval;
break;
case QPMS_BESSEL_SINGULAR: //FIXME: is this precise enough? Would it be better to do it one-by-one?
retval = gsl_sf_bessel_yl_array(lmax,x,tmparr);
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
return retval;
break;
case QPMS_HANKEL_PLUS:
case QPMS_HANKEL_MINUS:
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
if(retval) return retval;
retval = gsl_sf_bessel_yl_array(lmax, x, tmparr);
if (typ==QPMS_HANKEL_PLUS)
for (int l = 0; l <= lmax; ++l) result_array[l] += I * tmparr[l];
else
for (int l = 0; l <= lmax; ++l) result_array[l] +=-I * tmparr[l];
return retval;
break;
default:
abort();
//return GSL_EDOM;
}
assert(0);
}
static inline ptrdiff_t akn_index(qpms_l_t n, qpms_l_t k) {
assert(k <= n);
return ((ptrdiff_t) n + 1) * n / 2 + k;
}
static inline ptrdiff_t bkn_index(qpms_l_t n, qpms_l_t k) {
assert(k <= n+1);
return ((ptrdiff_t) n + 2) * (n + 1) / 2 - 1 + k;
}
static inline qpms_errno_t qpms_sbessel_calculator_ensure_lMax(qpms_sbessel_calculator_t *c, qpms_l_t lMax) {
if (lMax <= c->lMax)
return QPMS_SUCCESS;
else {
if ( NULL == (c->akn = realloc(c->akn, sizeof(double) * akn_index(lMax + 2, 0))))
abort();
//if ( NULL == (c->bkn = realloc(c->bkn, sizeof(complex double) * bkn_index(lMax + 1, 0))))
// abort();
for(qpms_l_t n = c->lMax+1; n <= lMax + 1; ++n)
for(qpms_l_t k = 0; k <= n; ++k)
c->akn[akn_index(n,k)] = exp(lgamma(n + k + 1) - k*M_LN2 - lgamma(k + 1) - lgamma(n - k + 1));
// ... TODO derivace
c->lMax = lMax;
return QPMS_SUCCESS;
}
}
complex double qpms_sbessel_calc_h1(qpms_sbessel_calculator_t *c, qpms_l_t n, double x) {
if(QPMS_SUCCESS != qpms_sbessel_calculator_ensure_lMax(c, n))
abort();
complex double z = I/x; // FIXME this should be imaginary double, but gcc is broken?
complex double result = 0;
for (qpms_l_t k = n; k >= 0; --k)
// can we use fma for complex?
//result = fma(result, z, c->akn(n, k));
result = result * z + c->akn[akn_index(n,k)];
result *= z * ipow(-n-2) * cexp(I * x);
return result;
}
qpms_errno_t qpms_sbessel_calc_h1_fill(qpms_sbessel_calculator_t * const c,
const qpms_l_t lMax, const double x, complex double * const target) {
if(QPMS_SUCCESS != qpms_sbessel_calculator_ensure_lMax(c, lMax))
abort();
memset(target, 0, sizeof(complex double) * lMax);
complex double kahancomp[lMax];
memset(kahancomp, 0, sizeof(complex double) * lMax);
for(qpms_l_t k = 0; k <= lMax; ++k){
double xp = pow(x, -k-1);
for(qpms_l_t l = k; l <= lMax; ++l)
ckahanadd(target + l, kahancomp + l, c->akn[akn_index(l,k)] * xp * ipow(k-l-1));
}
complex double eix = cexp(I * x);
for (qpms_l_t l = 0; l <= lMax; ++l)
target[l] *= eix;
return QPMS_SUCCESS;
}
qpms_sbessel_calculator_t *qpms_sbessel_calculator_init() {
qpms_sbessel_calculator_t *c = malloc(sizeof(qpms_sbessel_calculator_t));
c->akn = NULL;
//c->bkn = NULL;
c->lMax = -1;
return c;
}
void qpms_sbessel_calculator_pfree(qpms_sbessel_calculator_t *c) {
if(c->akn) free(c->akn);
//if(c->bkn) free(c->bkn);
free(c);
}