1597 lines
57 KiB
C
1597 lines
57 KiB
C
#include <math.h>
|
||
#include "qpms_types.h"
|
||
#include "gaunt.h"
|
||
#include "translations.h"
|
||
#include "indexing.h" // TODO replace size_t and int with own index types here
|
||
#include <stdbool.h>
|
||
#include <gsl/gsl_sf_legendre.h>
|
||
#include <gsl/gsl_sf_bessel.h>
|
||
#include "assert_cython_workaround.h"
|
||
#include "kahansum.h"
|
||
#include <stdlib.h> //abort()
|
||
#include <gsl/gsl_sf_coupling.h>
|
||
|
||
|
||
/*
|
||
* Define macros with additional factors that "should not be there" according
|
||
* to the "original" formulae but are needed to work with my vswfs.
|
||
* (actually, I don't know whether the error is in using "wrong" implementation
|
||
* of vswfs, "wrong" implementation of Xu's translation coefficient formulae,
|
||
* error/inconsintency in Xu's paper or something else)
|
||
* Anyway, the zeroes give the correct _numerical_ values according to Xu's
|
||
* paper tables (without Xu's typos, of course), while
|
||
* the predefined macros give the correct translations of the VSWFs for the
|
||
* QPMS_NORMALIZATION_TAYLOR_CS norm.
|
||
*/
|
||
#if !(defined AN0 || defined AN1 || defined AN2 || defined AN3)
|
||
#pragma message "using AN1 macro as default"
|
||
#define AN1
|
||
#endif
|
||
//#if !(defined AM0 || defined AM2)
|
||
//#define AM1
|
||
//#endif
|
||
#if !(defined BN0 || defined BN1 || defined BN2 || defined BN3)
|
||
#pragma message "using BN1 macro as default"
|
||
#define BN1
|
||
#endif
|
||
//#if !(defined BM0 || defined BM2)
|
||
//#define BM1
|
||
//#endif
|
||
//#if !(defined BF0 || defined BF1 || defined BF2 || defined BF3)
|
||
//#define BF1
|
||
//#endif
|
||
|
||
// if defined, the pointer B_multipliers[y] corresponds to the q = 1 element;
|
||
// otherwise, it corresponds to the q = 0 element, which should be identically zero
|
||
#ifdef QPMS_PACKED_B_MULTIPLIERS
|
||
#define BQ_OFFSET 1
|
||
#else
|
||
#define BQ_OFFSET 0
|
||
#endif
|
||
|
||
|
||
/*
|
||
* References:
|
||
* [Xu_old] Yu-Lin Xu, Journal of Computational Physics 127, 285–298 (1996)
|
||
* [Xu] Yu-Lin Xu, Journal of Computational Physics 139, 137–165 (1998)
|
||
*/
|
||
|
||
/*
|
||
* GENERAL TODO: use normalised Legendre functions for Kristensson and Taylor conventions directly
|
||
* instead of normalising them here (the same applies for csphase).
|
||
*/
|
||
|
||
static const double sqrtpi = 1.7724538509055160272981674833411451827975494561223871;
|
||
//static const double ln2 = 0.693147180559945309417232121458176568075500134360255254120;
|
||
|
||
// Associated Legendre polynomial at zero argument (DLMF 14.5.1)
|
||
double qpms_legendre0(int m, int n) {
|
||
return pow(2,m) * sqrtpi / tgamma(.5*n - .5*m + .5) / tgamma(.5*n-.5*m);
|
||
}
|
||
|
||
static inline int min1pow(int x) {
|
||
return (x % 2) ? -1 : 1;
|
||
}
|
||
|
||
static inline complex double ipow(int x) {
|
||
return cpow(I, x);
|
||
}
|
||
|
||
// Derivative of associated Legendre polynomial at zero argument (DLMF 14.5.2)
|
||
double qpms_legendreD0(int m, int n) {
|
||
return -2 * qpms_legendre0(m, n);
|
||
}
|
||
|
||
|
||
static inline int imin(int x, int y) {
|
||
return x > y ? y : x;
|
||
}
|
||
|
||
// The uppermost value of q index for the B coefficient terms from [Xu](60).
|
||
// N.B. this is different from [Xu_old](79) due to the n vs. n+1 difference.
|
||
// However, the trailing terms in [Xu_old] are analytically zero (although
|
||
// the numerical values will carry some non-zero rounding error).
|
||
static inline int gauntB_Q_max(int M, int n, int mu, int nu) {
|
||
return imin(n, imin(nu, (n+nu+1-abs(M+mu))/2));
|
||
}
|
||
|
||
int qpms_sph_bessel_fill(qpms_bessel_t typ, int lmax, double x, complex double *result_array) {
|
||
int retval;
|
||
double tmparr[lmax+1];
|
||
switch(typ) {
|
||
case QPMS_BESSEL_REGULAR:
|
||
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
|
||
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
|
||
return retval;
|
||
break;
|
||
case QPMS_BESSEL_SINGULAR: //FIXME: is this precise enough? Would it be better to do it one-by-one?
|
||
retval = gsl_sf_bessel_yl_array(lmax,x,tmparr);
|
||
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
|
||
return retval;
|
||
break;
|
||
case QPMS_HANKEL_PLUS:
|
||
case QPMS_HANKEL_MINUS:
|
||
retval = gsl_sf_bessel_jl_steed_array(lmax, x, tmparr);
|
||
for (int l = 0; l <= lmax; ++l) result_array[l] = tmparr[l];
|
||
if(retval) return retval;
|
||
retval = gsl_sf_bessel_yl_array(lmax, x, tmparr);
|
||
if (typ==QPMS_HANKEL_PLUS)
|
||
for (int l = 0; l <= lmax; ++l) result_array[l] += I * tmparr[l];
|
||
else
|
||
for (int l = 0; l <= lmax; ++l) result_array[l] +=-I * tmparr[l];
|
||
return retval;
|
||
break;
|
||
default:
|
||
abort();
|
||
//return GSL_EDOM;
|
||
}
|
||
assert(0);
|
||
}
|
||
|
||
static inline double qpms_trans_normlogfac(qpms_normalisation_t norm,
|
||
int m, int n, int mu, int nu) {
|
||
//int csphase = qpms_normalisation_t csphase(norm); // probably not needed here
|
||
norm = qpms_normalisation_t_normonly(norm);
|
||
switch(norm) {
|
||
case QPMS_NORMALISATION_KRISTENSSON:
|
||
case QPMS_NORMALISATION_TAYLOR:
|
||
return -0.5*(lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1));
|
||
break;
|
||
case QPMS_NORMALISATION_NONE:
|
||
return -(lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1));
|
||
break;
|
||
#ifdef USE_XU_ANTINORMALISATION
|
||
case QPMS_NORMALISATION_XU:
|
||
return 0;
|
||
break;
|
||
#endif
|
||
default:
|
||
abort();
|
||
}
|
||
}
|
||
|
||
static inline double qpms_trans_normfac(qpms_normalisation_t norm,
|
||
int m, int n, int mu, int nu) {
|
||
int csphase = qpms_normalisation_t_csphase(norm);
|
||
norm = qpms_normalisation_t_normonly(norm);
|
||
/* Account for csphase here. Alternatively, this could be done by
|
||
* using appropriate csphase in the legendre polynomials when calculating
|
||
* the translation operator.
|
||
*/
|
||
double normfac = (1 == csphase) ? min1pow(m-mu) : 1.;
|
||
switch(norm) {
|
||
case QPMS_NORMALISATION_KRISTENSSON:
|
||
normfac *= sqrt((n*(n+1.))/(nu*(nu+1.)));
|
||
normfac *= sqrt((2.*n+1)/(2.*nu+1));
|
||
break;
|
||
case QPMS_NORMALISATION_TAYLOR:
|
||
normfac *= sqrt((2.*n+1)/(2.*nu+1));
|
||
break;
|
||
case QPMS_NORMALISATION_NONE:
|
||
normfac *= (2.*n+1)/(2.*nu+1);
|
||
break;
|
||
#ifdef USE_XU_ANTINORMALISATION
|
||
case QPMS_NORMALISATION_XU:
|
||
break;
|
||
#endif
|
||
default:
|
||
abort();
|
||
}
|
||
|
||
return normfac;
|
||
}
|
||
|
||
complex double qpms_trans_single_A(qpms_normalisation_t norm,
|
||
int m, int n, int mu, int nu, sph_t kdlj,
|
||
bool r_ge_d, qpms_bessel_t J) {
|
||
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
|
||
|
||
double costheta = cos(kdlj.theta);
|
||
|
||
int qmax = gaunt_q_max(-m,n,mu,nu); // nemá tu být +m?
|
||
// N.B. -m !!!!!!
|
||
double a1q[qmax+1];
|
||
int err;
|
||
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
|
||
double a1q0 = a1q[0];
|
||
if (err) abort();
|
||
|
||
int csphase = qpms_normalisation_t_csphase(norm);
|
||
|
||
double leg[gsl_sf_legendre_array_n(n+nu)];
|
||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,costheta,csphase,leg)) abort();
|
||
complex double bes[n+nu+1];
|
||
if (qpms_sph_bessel_fill(J, n+nu, kdlj.r, bes)) abort();
|
||
complex double sum = 0;
|
||
for(int q = 0; q <= qmax; ++q) {
|
||
int p = n+nu-2*q;
|
||
int Pp_order = mu-m;
|
||
//if(p < abs(Pp_order)) continue; // FIXME raději nastav lépe meze
|
||
assert(p >= abs(Pp_order));
|
||
double a1q_n = a1q[q] / a1q0;
|
||
double Pp = leg[gsl_sf_legendre_array_index(p, abs(Pp_order))];
|
||
if (Pp_order < 0) Pp *= min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
|
||
complex double zp = bes[p];
|
||
complex double summandq = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n * zp * Pp;
|
||
sum += summandq; // TODO KAHAN
|
||
}
|
||
|
||
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1));
|
||
complex double presum = exp(exponent);
|
||
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n) / (4*n);
|
||
|
||
double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu);
|
||
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
|
||
|
||
// ipow(n-nu) is the difference from the Taylor formula!
|
||
presum *= /*ipow(n-nu) * */
|
||
(normfac * exp(normlogfac))
|
||
#ifdef AN1
|
||
* ipow(n-nu)
|
||
#elif defined AN2
|
||
* min1pow(-n+nu)
|
||
#elif defined AN3
|
||
* ipow (nu - n)
|
||
#endif
|
||
#ifdef AM2
|
||
* min1pow(-m+mu)
|
||
#endif //NNU
|
||
;
|
||
return presum * sum;
|
||
}
|
||
|
||
complex double qpms_trans_single_A_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
|
||
bool r_ge_d, qpms_bessel_t J) {
|
||
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
|
||
|
||
double costheta = cos(kdlj.theta);
|
||
|
||
int qmax = gaunt_q_max(-m,n,mu,nu); // nemá tu být +m?
|
||
// N.B. -m !!!!!!
|
||
double a1q[qmax+1];
|
||
int err;
|
||
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
|
||
double a1q0 = a1q[0];
|
||
if (err) abort();
|
||
|
||
double leg[gsl_sf_legendre_array_n(n+nu)];
|
||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,costheta,-1,leg)) abort();
|
||
complex double bes[n+nu+1];
|
||
if (qpms_sph_bessel_fill(J, n+nu, kdlj.r, bes)) abort();
|
||
complex double sum = 0;
|
||
for(int q = 0; q <= qmax; ++q) {
|
||
int p = n+nu-2*q;
|
||
int Pp_order = mu-m;
|
||
//if(p < abs(Pp_order)) continue; // FIXME raději nastav lépe meze
|
||
assert(p >= abs(Pp_order));
|
||
double a1q_n = a1q[q] / a1q0;
|
||
double Pp = leg[gsl_sf_legendre_array_index(p, abs(Pp_order))];
|
||
if (Pp_order < 0) Pp *= min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
|
||
complex double zp = bes[p];
|
||
complex double summandq = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n * zp * Pp;
|
||
sum += summandq; // TODO KAHAN
|
||
}
|
||
|
||
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1));
|
||
complex double presum = exp(exponent);
|
||
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n) / (4*n);
|
||
|
||
// N.B. ipow(nu-n) is different from the general formula!
|
||
complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp(
|
||
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)));
|
||
return (presum / prenormratio) * sum;
|
||
}
|
||
|
||
// [Xu_old], eq. (83)
|
||
complex double qpms_trans_single_B_Xu(int m, int n, int mu, int nu, sph_t kdlj,
|
||
bool r_ge_d, qpms_bessel_t J) {
|
||
assert(0); // FIXME probably gives wrong values, do not use.
|
||
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
|
||
double costheta = cos(kdlj.theta);
|
||
|
||
// TODO Qmax cleanup: can I replace Qmax with realQmax???
|
||
int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu);
|
||
int Qmax = gaunt_q_max(-m,n+1,mu,nu);
|
||
int realQmax = gauntB_Q_max(-m, n, mu, nu);
|
||
double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0;
|
||
int err;
|
||
if (mu == nu) {
|
||
for (int q = 0; q <= q2max; ++q)
|
||
a2q[q] = 0;
|
||
a2q0 = 1;
|
||
}
|
||
else {
|
||
gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort();
|
||
a2q0 = a2q[0];
|
||
}
|
||
gaunt_xu(-m,n+1,mu,nu,Qmax,a3q,&err); if (err) abort();
|
||
a3q0 = a3q[0];
|
||
|
||
double leg[gsl_sf_legendre_array_n(n+nu+1)];
|
||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,costheta,-1,leg)) abort();
|
||
complex double bes[n+nu+2];
|
||
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bes)) abort();
|
||
|
||
complex double sum = 0;
|
||
for (int q = 0; q <= realQmax; ++q) {
|
||
int p = n+nu-2*q;
|
||
double a2q_n = a2q[q]/a2q0;
|
||
double a3q_n = a3q[q]/a3q0;
|
||
complex double zp_ = bes[p+1];
|
||
int Pp_order_ = mu-m;
|
||
//if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze
|
||
assert(p+1 >= abs(Pp_order_));
|
||
double Pp_ = leg[gsl_sf_legendre_array_index(p+1, abs(Pp_order_))];
|
||
if (Pp_order_ < 0) Pp_ *= min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_));
|
||
complex double summandq = ((2*(n+1)*(nu-mu)*a2q_n
|
||
-(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n)
|
||
*min1pow(q) * zp_ * Pp_);
|
||
sum += summandq; // TODO KAHAN
|
||
}
|
||
|
||
double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||
+lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||
+lgamma(n+nu+2) - lgamma(2*(n+nu)+3));
|
||
complex double presum = exp(exponent);
|
||
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n+1) / (
|
||
(4*n)*(n+1)*(n+m+1));
|
||
|
||
// Taylor normalisation v2, proven to be equivalent
|
||
complex double prenormratio = ipow(nu-n);
|
||
|
||
return (presum / prenormratio) * sum;
|
||
}
|
||
|
||
complex double qpms_trans_single_B(qpms_normalisation_t norm,
|
||
int m, int n, int mu, int nu, sph_t kdlj,
|
||
bool r_ge_d, qpms_bessel_t J) {
|
||
#ifndef USE_BROKEN_SINGLETC
|
||
assert(0); // FIXME probably gives wrong values, do not use.
|
||
#endif
|
||
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
|
||
double costheta = cos(kdlj.theta);
|
||
|
||
int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu);
|
||
int Qmax = gaunt_q_max(-m,n+1,mu,nu);
|
||
int realQmax = gauntB_Q_max(-m,n,mu,nu);
|
||
double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0;
|
||
int err;
|
||
if (mu == nu) {
|
||
for (int q = 0; q <= q2max; ++q)
|
||
a2q[q] = 0;
|
||
a2q0 = 1;
|
||
}
|
||
else {
|
||
gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort();
|
||
a2q0 = a2q[0];
|
||
}
|
||
gaunt_xu(-m,n+1,mu,nu,Qmax,a3q,&err); if (err) abort();
|
||
a3q0 = a3q[0];
|
||
|
||
int csphase = qpms_normalisation_t_csphase(norm);
|
||
|
||
double leg[gsl_sf_legendre_array_n(n+nu+1)];
|
||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,costheta,csphase,leg)) abort();
|
||
complex double bes[n+nu+2];
|
||
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bes)) abort();
|
||
|
||
complex double sum = 0;
|
||
for (int q = 0; q <= realQmax; ++q) {
|
||
int p = n+nu-2*q;
|
||
double a2q_n = a2q[q]/a2q0;
|
||
double a3q_n = a3q[q]/a3q0;
|
||
complex double zp_ = bes[p+1];
|
||
int Pp_order_ = mu-m;
|
||
//if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze
|
||
assert(p+1 >= abs(Pp_order_));
|
||
double Pp_ = leg[gsl_sf_legendre_array_index(p+1, abs(Pp_order_))];
|
||
if (Pp_order_ < 0) Pp_ *= min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_));
|
||
complex double summandq = ((2*(n+1)*(nu-mu)*a2q_n
|
||
-(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n)
|
||
*min1pow(q) * zp_ * Pp_);
|
||
sum += summandq; //TODO KAHAN
|
||
}
|
||
|
||
double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||
+lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||
+lgamma(n+nu+2) - lgamma(2*(n+nu)+3));
|
||
complex double presum = exp(exponent);
|
||
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n+1) / (
|
||
(4*n)*(n+1)*(n+m+1));
|
||
|
||
double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu);
|
||
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
|
||
|
||
// ipow(n-nu) is the difference from the "old Taylor" formula
|
||
presum *= /*ipow(n-nu) * */(exp(normlogfac) * normfac)
|
||
#ifdef AN1
|
||
* ipow(n-nu)
|
||
#elif defined AN2
|
||
* min1pow(-n+nu)
|
||
#elif defined AN3
|
||
* ipow (nu - n)
|
||
#endif
|
||
#ifdef AM2
|
||
* min1pow(-m+mu)
|
||
#endif //NNU
|
||
;
|
||
|
||
return presum * sum;
|
||
}
|
||
|
||
complex double qpms_trans_single_B_Taylor(int m, int n, int mu, int nu, sph_t kdlj,
|
||
bool r_ge_d, qpms_bessel_t J) {
|
||
assert(0); // FIXME probably gives wrong values, do not use.
|
||
if(r_ge_d) J = QPMS_BESSEL_REGULAR;
|
||
double costheta = cos(kdlj.theta);
|
||
|
||
int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu);
|
||
int Qmax = gaunt_q_max(-m,n+1,mu,nu);
|
||
int realQmax = gauntB_Q_max(-m,n,mu,nu);
|
||
double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0;
|
||
int err;
|
||
if (mu == nu) {
|
||
for (int q = 0; q <= q2max; ++q)
|
||
a2q[q] = 0;
|
||
a2q0 = 1;
|
||
}
|
||
else {
|
||
gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort();
|
||
a2q0 = a2q[0];
|
||
}
|
||
gaunt_xu(-m,n+1,mu,nu,Qmax,a3q,&err); if (err) abort();
|
||
a3q0 = a3q[0];
|
||
|
||
double leg[gsl_sf_legendre_array_n(n+nu+1)];
|
||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,costheta,-1,leg)) abort();
|
||
complex double bes[n+nu+2];
|
||
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bes)) abort();
|
||
|
||
complex double sum = 0;
|
||
for (int q = 0; q <= realQmax; ++q) {
|
||
int p = n+nu-2*q;
|
||
double a2q_n = a2q[q]/a2q0;
|
||
double a3q_n = a3q[q]/a3q0;
|
||
complex double zp_ = bes[p+1];
|
||
int Pp_order_ = mu-m;
|
||
//if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze
|
||
assert(p+1 >= abs(Pp_order_));
|
||
double Pp_ = leg[gsl_sf_legendre_array_index(p+1, abs(Pp_order_))];
|
||
if (Pp_order_ < 0) Pp_ *= min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_));
|
||
complex double summandq = ((2*(n+1)*(nu-mu)*a2q_n
|
||
-(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n)
|
||
*min1pow(q) * zp_ * Pp_);
|
||
sum += summandq; //TODO KAHAN
|
||
}
|
||
|
||
double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||
+lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||
+lgamma(n+nu+2) - lgamma(2*(n+nu)+3));
|
||
complex double presum = exp(exponent);
|
||
presum *= cexp(I*(mu-m)*kdlj.phi) * min1pow(m) * ipow(nu+n+1) / (
|
||
(4*n)*(n+1)*(n+m+1));
|
||
|
||
// Taylor normalisation v2, proven to be equivalent
|
||
// ipow(nu-n) is different from the new general formula!!!
|
||
complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp(
|
||
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)));
|
||
|
||
return (presum / prenormratio) * sum;
|
||
}
|
||
|
||
complex double qpms_trans_single_A_Taylor_ext(int m, int n, int mu, int nu,
|
||
double kdlj_r, double kdlj_theta, double kdlj_phi, int r_ge_d, int J) {
|
||
sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi};
|
||
return qpms_trans_single_A_Taylor(m,n,mu,nu,kdlj,r_ge_d,J);
|
||
}
|
||
|
||
complex double qpms_trans_single_B_Taylor_ext(int m, int n, int mu, int nu,
|
||
double kdlj_r, double kdlj_theta, double kdlj_phi, int r_ge_d, int J) {
|
||
sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi};
|
||
return qpms_trans_single_B_Taylor(m,n,mu,nu,kdlj,r_ge_d,J);
|
||
}
|
||
|
||
void qpms_trans_calculator_free(qpms_trans_calculator *c) {
|
||
free(c->A_multipliers[0]);
|
||
free(c->A_multipliers);
|
||
free(c->B_multipliers[0]);
|
||
free(c->B_multipliers);
|
||
#ifdef LATTICESUMS
|
||
free(c->hct);
|
||
free(c->legendre0);
|
||
#endif
|
||
free(c);
|
||
}
|
||
|
||
static inline size_t qpms_trans_calculator_index_mnmunu(const qpms_trans_calculator *c,
|
||
int m, int n, int mu, int nu){
|
||
return c->nelem * qpms_mn2y(m,n) + qpms_mn2y(mu,nu);
|
||
}
|
||
|
||
static inline size_t qpms_trans_calculator_index_yyu(const qpms_trans_calculator *c,
|
||
size_t y, size_t yu) {
|
||
return c->nelem * y + yu;
|
||
}
|
||
|
||
|
||
#define SQ(x) ((x)*(x))
|
||
|
||
static inline int isq(int x) { return x * x; }
|
||
static inline double fsq(double x) {return x * x; }
|
||
|
||
static void qpms_trans_calculator_multipliers_A_general(
|
||
qpms_normalisation_t norm,
|
||
complex double *dest, int m, int n, int mu, int nu, int qmax) {
|
||
assert(qmax == gaunt_q_max(-m,n,mu,nu));
|
||
double a1q[qmax+1];
|
||
int err;
|
||
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
|
||
if (err) abort();
|
||
double a1q0 = a1q[0];
|
||
|
||
double normlogfac = qpms_trans_normlogfac(norm,m,n,mu,nu);
|
||
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
|
||
|
||
normfac *= min1pow(m); //different from old Taylor
|
||
|
||
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1))
|
||
+ normlogfac;
|
||
complex double presum = exp(exponent);
|
||
presum *= normfac / (4.*n);
|
||
presum *= ipow(n+nu); // different from old Taylor
|
||
|
||
for(int q = 0; q <= qmax; q++) {
|
||
int p = n+nu-2*q;
|
||
int Pp_order = mu - m;
|
||
assert(p >= abs(Pp_order));
|
||
double a1q_n = a1q[q] / a1q0;
|
||
// Assuming non_normalized legendre polynomials (normalisation done here by hand)!
|
||
double Ppfac = (Pp_order >= 0) ? 1 :
|
||
min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
|
||
double summandfac = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n;
|
||
dest[q] = presum * summandfac * Ppfac
|
||
#ifdef AN1
|
||
* ipow(n-nu)
|
||
#elif defined AN2
|
||
* min1pow(-n+nu)
|
||
#elif defined AN3
|
||
* ipow (nu - n)
|
||
#endif
|
||
#ifdef AM2
|
||
* min1pow(-m+mu)
|
||
#endif //NNU
|
||
;
|
||
// FIXME I might not need complex here
|
||
}
|
||
}
|
||
|
||
|
||
// as in [Xu](61)
|
||
double cruzan_bfactor(int M, int n, int mu, int nu, int p) {
|
||
double logprefac = lgamma(n+M+1) - lgamma(n-M+1) + lgamma(nu+mu+1) - lgamma(nu-mu+1)
|
||
+ lgamma(p-M-mu+2) - lgamma(p+M+mu+2);
|
||
logprefac *= 0.5;
|
||
return min1pow(mu+M) * (2*p+3) * exp(logprefac)
|
||
* gsl_sf_coupling_3j(2*n, 2*nu, 2*(p+1), 2*M, 2*mu, 2*(-M-mu))
|
||
* gsl_sf_coupling_3j(2*n, 2*nu, 2*p, 0, 0, 0);
|
||
}
|
||
|
||
|
||
void qpms_trans_calculator_multipliers_B_general(
|
||
qpms_normalisation_t norm,
|
||
complex double *dest, int m, int n, int mu, int nu, int Qmax){
|
||
// This is according to the Cruzan-type formula [Xu](59)
|
||
assert(Qmax == gauntB_Q_max(-m,n,mu,nu));
|
||
|
||
|
||
|
||
double normlogfac= qpms_trans_normlogfac(norm,m,n,mu,nu);
|
||
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
|
||
|
||
double presum = min1pow(1-m) * (2*nu+1)/(2.*(n*(n+1)))
|
||
* exp(lgamma(n+m+1) - lgamma(n-m+1) + lgamma(nu-mu+1) - lgamma(nu+mu+1)
|
||
+ normlogfac)
|
||
* normfac;
|
||
|
||
for(int q = BQ_OFFSET; q <= Qmax; ++q) {
|
||
int p = n+nu-2*q;
|
||
int Pp_order = mu - m;
|
||
// Assuming non-normalised Legendre polynomials, normalise here by hand.
|
||
// Ppfac_ differs from Ppfac in the A-case by the substitution p->p+1
|
||
double Ppfac_ = (Pp_order >= 0)? 1 :
|
||
min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order)-lgamma(1+1+p-Pp_order));
|
||
double t = sqrt(
|
||
(isq(p+1)-isq(n-nu))
|
||
* (isq(n+nu+1)-isq(p+1))
|
||
);
|
||
dest[q-BQ_OFFSET] = presum * t * Ppfac_
|
||
* cruzan_bfactor(-m,n,mu,nu,p) * ipow(p+1)
|
||
#ifdef BN1
|
||
* ipow(n-nu)
|
||
#elif defined BN2
|
||
* min1pow(-n+nu)
|
||
#elif defined BN3
|
||
* ipow (nu - n)
|
||
#endif
|
||
#ifdef BM2
|
||
* min1pow(-m+mu)
|
||
#endif
|
||
#ifdef BF1
|
||
* I
|
||
#elif defined BF2
|
||
* (-1)
|
||
#elif defined BF3
|
||
* (-I)
|
||
#endif
|
||
;// NNU
|
||
}
|
||
}
|
||
|
||
/*static*/ void qpms_trans_calculator_multipliers_B_general_oldXu(
|
||
qpms_normalisation_t norm,
|
||
complex double *dest, int m, int n, int mu, int nu, int Qmax) {
|
||
assert(0); // FIXME probably gives wrong values, do not use.
|
||
assert(Qmax == gauntB_Q_max(-m,n,mu,nu));
|
||
int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu);
|
||
// assert(Qmax == q2max);
|
||
// FIXME is it safe to replace q2max with Qmax in gaunt_xu??
|
||
double a2q[q2max+1], a3q[Qmax+1], a2q0, a3q0;
|
||
int err;
|
||
if (mu == nu) {
|
||
for (int q = 0; q <= q2max; ++q)
|
||
a2q[q] = 0;
|
||
a2q0 = 1;
|
||
}
|
||
else {
|
||
gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort();
|
||
a2q0 = a2q[0];
|
||
}
|
||
gaunt_xu(-m,n+1,mu,nu,q2max,a3q,&err); if (err) abort(); // FIXME this should probably go away
|
||
a3q0 = a3q[0];
|
||
|
||
|
||
int csphase = qpms_normalisation_t_csphase(norm); //TODO FIXME use this
|
||
norm = qpms_normalisation_t_normonly(norm);
|
||
double normlogfac= qpms_trans_normlogfac(norm,m,n,mu,nu);
|
||
double normfac = qpms_trans_normfac(norm,m,n,mu,nu);
|
||
// TODO use csphase to modify normfac here!!!!
|
||
// normfac = xxx ? -normfac : normfac;
|
||
normfac *= min1pow(m);//different from old taylor
|
||
|
||
|
||
|
||
double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||
+lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||
+lgamma(n+nu+2) - lgamma(2*(n+nu)+3))
|
||
+normlogfac;
|
||
complex double presum = exp(exponent);
|
||
presum *= I * ipow(nu+n) /*different from old Taylor */ * normfac / (
|
||
(4*n)*(n+1)*(n+m+1));
|
||
|
||
for (int q = BQ_OFFSET; q <= Qmax; ++q) {
|
||
int p = n+nu-2*q;
|
||
double a2q_n = a2q[q]/a2q0;
|
||
double a3q_n = a3q[q]/a3q0;
|
||
int Pp_order_ = mu-m;
|
||
//if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze
|
||
assert(p+1 >= abs(Pp_order_));
|
||
double Ppfac = (Pp_order_ >= 0) ? 1 :
|
||
|
||
min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_));
|
||
double summandq = ((2*(n+1)*(nu-mu)*a2q_n
|
||
-(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n)
|
||
*min1pow(q));
|
||
dest[q-BQ_OFFSET] = Ppfac * summandq * presum;
|
||
}
|
||
}
|
||
|
||
//#if 0
|
||
static void qpms_trans_calculator_multipliers_A_Taylor(
|
||
complex double *dest, int m, int n, int mu, int nu, int qmax) {
|
||
assert(qmax == gaunt_q_max(-m,n,mu,nu));
|
||
double a1q[qmax+1];
|
||
int err;
|
||
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
|
||
if (err) abort();
|
||
double a1q0 = a1q[0];
|
||
|
||
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1)) - 0.5*( // ex-prenormratio
|
||
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1));
|
||
double presum = exp(exponent);
|
||
presum *= min1pow(m+n) * sqrt((2.*n+1)/(2.*nu+1)) / (4*n);
|
||
|
||
for(int q = 0; q <= qmax; q++) {
|
||
int p = n+nu-2*q;
|
||
int Pp_order = mu - m;
|
||
assert(p >= abs(Pp_order));
|
||
double a1q_n = a1q[q] / a1q0;
|
||
// Assuming non_normalized legendre polynomials!
|
||
double Ppfac = (Pp_order >= 0) ? 1 :
|
||
min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
|
||
double summandfac = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n;
|
||
dest[q] = presum * summandfac * Ppfac;
|
||
// FIXME I might not need complex here
|
||
}
|
||
}
|
||
//#endif
|
||
#if 0
|
||
static void qpms_trans_calculator_multipliers_A_Taylor(
|
||
complex double *dest, int m, int n, int mu, int nu, int qmax) {
|
||
assert(qmax == gaunt_q_max(-m,n,mu,nu));
|
||
double a1q[qmax+1];
|
||
int err;
|
||
gaunt_xu(-m,n,mu,nu,qmax,a1q,&err);
|
||
if (err) abort();
|
||
double a1q0 = a1q[0];
|
||
for(int q = 0; q <= qmax; ++q) {
|
||
int p = n+nu-2*q;
|
||
int Pp_order = mu-m;
|
||
//if(p < abs(Pp_order)) continue; // FIXME raději nastav lépe meze
|
||
assert(p >= abs(Pp_order));
|
||
double a1q_n = a1q[q] / a1q0;
|
||
//double Pp = leg[gsl_sf_legendre_array_index(p, abs(Pp_order))];
|
||
//complex double zp = bes[p];
|
||
dest[q] = (n*(n+1) + nu*(nu+1) - p*(p+1)) * min1pow(q) * a1q_n /* * zp * Pp*/;
|
||
if (Pp_order < 0) dest[q] *= min1pow(mu-m) * exp(lgamma(1+p+Pp_order)-lgamma(1+p-Pp_order));
|
||
//sum += summandq;
|
||
}
|
||
|
||
double exponent=(lgamma(2*n+1)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||
+lgamma(n+nu+m-mu+1)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||
+lgamma(n+nu+1) - lgamma(2*(n+nu)+1));
|
||
complex double presum = exp(exponent);
|
||
presum *=/* cexp(I*(mu-m)*kdlj.phi) * */ min1pow(m) * ipow(nu+n) / (4*n);
|
||
|
||
complex double prenormratio = ipow(nu-n) * sqrt(((2.*nu+1)/(2.*n+1))* exp(
|
||
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)-lgamma(nu+mu+1)));
|
||
//return (presum / prenormratio) * sum;
|
||
for(int q=0;q<=qmax;++q) dest[q] *= presum / prenormratio;
|
||
}
|
||
#endif
|
||
|
||
|
||
|
||
static void qpms_trans_calculator_multipliers_B_Taylor(
|
||
complex double *dest, int m, int n, int mu, int nu, int Qmax) {
|
||
assert(0); // FIXME probably gives wrong values, do not use.
|
||
assert(Qmax == gauntB_Q_max(-m,n,mu,nu));
|
||
int q2max = gaunt_q_max(-m-1,n+1,mu+1,nu);
|
||
//assert(Qmax == q2max);
|
||
// FIXME remove the q2max variable altogether, as it is probably equal
|
||
// to Qmax
|
||
double a2q[q2max+1], a3q[q2max+1], a2q0, a3q0;
|
||
int err;
|
||
if (mu == nu) {
|
||
for (int q = 0; q <= q2max; ++q)
|
||
a2q[q] = 0;
|
||
a2q0 = 1;
|
||
}
|
||
else {
|
||
gaunt_xu(-m-1,n+1,mu+1,nu,q2max,a2q,&err); if (err) abort();
|
||
a2q0 = a2q[0];
|
||
}
|
||
gaunt_xu(-m,n+1,mu,nu,q2max,a3q,&err); if (err) abort();
|
||
a3q0 = a3q[0];
|
||
|
||
double exponent=(lgamma(2*n+3)-lgamma(n+2)+lgamma(2*nu+3)-lgamma(nu+2)
|
||
+lgamma(n+nu+m-mu+2)-lgamma(n-m+1)-lgamma(nu+mu+1)
|
||
+lgamma(n+nu+2) - lgamma(2*(n+nu)+3)) - 0.5 * (
|
||
lgamma(n+m+1)-lgamma(n-m+1)+lgamma(nu-mu+1)
|
||
-lgamma(nu+mu+1));
|
||
complex double presum = exp(exponent);
|
||
presum *= I * (min1pow(m+n) *sqrt((2.*n+1)/(2.*nu+1)) / (
|
||
(4*n)*(n+1)*(n+m+1)));
|
||
|
||
for (int q = BQ_OFFSET; q <= Qmax; ++q) {
|
||
int p = n+nu-2*q;
|
||
double a2q_n = a2q[q]/a2q0;
|
||
double a3q_n = a3q[q]/a3q0;
|
||
int Pp_order_ = mu-m;
|
||
//if(p+1 < abs(Pp_order_)) continue; // FIXME raději nastav lépe meze
|
||
assert(p+1 >= abs(Pp_order_));
|
||
double Ppfac = (Pp_order_ >= 0) ? 1 :
|
||
|
||
min1pow(mu-m) * exp(lgamma(1+1+p+Pp_order_)-lgamma(1+1+p-Pp_order_));
|
||
double summandq = ((2*(n+1)*(nu-mu)*a2q_n
|
||
-(-nu*(nu+1) - n*(n+3) - 2*mu*(n+1)+p*(p+3))* a3q_n)
|
||
*min1pow(q));
|
||
dest[q-BQ_OFFSET] = Ppfac * summandq * presum;
|
||
}
|
||
}
|
||
|
||
int qpms_trans_calculator_multipliers_A(qpms_normalisation_t norm, complex double *dest, int m, int n, int mu, int nu, int qmax) {
|
||
switch (qpms_normalisation_t_normonly(norm)) {
|
||
case QPMS_NORMALISATION_TAYLOR:
|
||
#ifdef USE_SEPARATE_TAYLOR
|
||
qpms_trans_calculator_multipliers_A_Taylor(dest,m,n,mu,nu,qmax);
|
||
return 0;
|
||
break;
|
||
#endif
|
||
case QPMS_NORMALISATION_NONE:
|
||
#ifdef USE_XU_ANTINORMALISATION
|
||
case QPMS_NORMALISATION_XU:
|
||
#endif
|
||
case QPMS_NORMALISATION_KRISTENSSON:
|
||
qpms_trans_calculator_multipliers_A_general(norm, dest, m, n, mu, nu, qmax);
|
||
return 0;
|
||
break;
|
||
default:
|
||
abort();
|
||
}
|
||
assert(0);
|
||
}
|
||
|
||
int qpms_trans_calculator_multipliers_B(qpms_normalisation_t norm, complex double *dest, int m, int n, int mu, int nu, int Qmax) {
|
||
switch (qpms_normalisation_t_normonly(norm)) {
|
||
case QPMS_NORMALISATION_TAYLOR:
|
||
#ifdef USE_SEPARATE_TAYLOR
|
||
qpms_trans_calculator_multipliers_B_Taylor(dest,m,n,mu,nu,Qmax);
|
||
return 0;
|
||
break;
|
||
#endif
|
||
case QPMS_NORMALISATION_NONE:
|
||
#ifdef USE_XU_ANTINORMALISATION
|
||
case QPMS_NORMALISATION_XU:
|
||
#endif
|
||
case QPMS_NORMALISATION_KRISTENSSON:
|
||
qpms_trans_calculator_multipliers_B_general(norm, dest, m, n, mu, nu, Qmax);
|
||
return 0;
|
||
break;
|
||
default:
|
||
abort();
|
||
}
|
||
assert(0);
|
||
}
|
||
|
||
qpms_trans_calculator
|
||
*qpms_trans_calculator_init (int lMax, qpms_normalisation_t normalisation) {
|
||
assert(lMax > 0);
|
||
qpms_trans_calculator *c = malloc(sizeof(qpms_trans_calculator));
|
||
c->lMax = lMax;
|
||
c->nelem = lMax * (lMax+2);
|
||
c->A_multipliers = malloc((1+SQ(c->nelem)) * sizeof(complex double *));
|
||
c->B_multipliers = malloc((1+SQ(c->nelem)) * sizeof(complex double *));
|
||
c->normalisation = normalisation;
|
||
size_t *qmaxes = malloc(SQ(c->nelem) * sizeof(size_t));
|
||
size_t qmaxsum = 0;
|
||
for(size_t y = 0; y < c->nelem; y++)
|
||
for(size_t yu = 0; yu < c->nelem; yu++) {
|
||
int m,n, mu, nu;
|
||
qpms_y2mn_p(y,&m,&n);
|
||
qpms_y2mn_p(yu,&mu,&nu);
|
||
qmaxsum += 1 + (
|
||
qmaxes[qpms_trans_calculator_index_yyu(c,y,yu)]
|
||
= gaunt_q_max(-m,n,mu,nu));
|
||
}
|
||
c->A_multipliers[0] = malloc(qmaxsum * sizeof(complex double));
|
||
// calculate multiplier beginnings
|
||
for(size_t i = 0; i < SQ(c->nelem); ++i)
|
||
c->A_multipliers[i+1] = c->A_multipliers[i] + qmaxes[i] + 1;
|
||
// calculate the multipliers
|
||
for(size_t y = 0; y < c->nelem; ++y)
|
||
for(size_t yu = 0; yu < c->nelem; ++yu) {
|
||
size_t i = y * c->nelem + yu;
|
||
int m, n, mu, nu;
|
||
qpms_y2mn_p(y, &m, &n);
|
||
qpms_y2mn_p(yu, &mu, &nu);
|
||
qpms_trans_calculator_multipliers_A(normalisation,
|
||
c->A_multipliers[i], m, n, mu, nu, qmaxes[i]);
|
||
}
|
||
|
||
qmaxsum = 0;
|
||
for(size_t y=0; y < c->nelem; y++)
|
||
for(size_t yu = 0; yu < c->nelem; yu++) {
|
||
int m, n, mu, nu;
|
||
qpms_y2mn_p(y,&m,&n);
|
||
qpms_y2mn_p(yu,&mu,&nu);
|
||
qmaxsum += (1 - BQ_OFFSET) + (
|
||
qmaxes[qpms_trans_calculator_index_yyu(c,y,yu)]
|
||
= gauntB_Q_max(-m,n,mu,nu));
|
||
}
|
||
c->B_multipliers[0] = malloc(qmaxsum * sizeof(complex double));
|
||
// calculate multiplier beginnings
|
||
for(size_t i = 0; i < SQ(c->nelem); ++i)
|
||
c->B_multipliers[i+1] = c->B_multipliers[i] + qmaxes[i] + (1 - BQ_OFFSET);
|
||
// calculate the multipliers
|
||
for(size_t y = 0; y < c->nelem; ++y)
|
||
for(size_t yu = 0; yu < c->nelem; ++yu) {
|
||
size_t i = y * c->nelem + yu;
|
||
int m, n, mu, nu;
|
||
qpms_y2mn_p(y, &m, &n);
|
||
qpms_y2mn_p(yu, &mu, &nu);
|
||
qpms_trans_calculator_multipliers_B(normalisation,
|
||
c->B_multipliers[i], m, n, mu, nu, qmaxes[i]);
|
||
}
|
||
|
||
free(qmaxes);
|
||
#ifdef LATTICESUMS
|
||
c->hct = hankelcoefftable_init(2*lMax+1);
|
||
c->legendre0 = malloc(gsl_sf_legendre_array_n(2*lMax+1) * sizeof(double));
|
||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,2*lMax+1,
|
||
0,-1,c->legendre0)) abort(); // TODO maybe use some "precise" analytical formula instead?
|
||
#endif
|
||
return c;
|
||
}
|
||
|
||
static inline complex double qpms_trans_calculator_get_A_precalcbuf(const qpms_trans_calculator *c,
|
||
int m, int n, int mu, int nu, sph_t kdlj,
|
||
bool r_ge_d, qpms_bessel_t J,
|
||
const complex double *bessel_buf, const double *legendre_buf) {
|
||
size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
|
||
size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1;
|
||
assert(qmax == gaunt_q_max(-m,n,mu,nu));
|
||
complex double sum, kahanc;
|
||
ckahaninit(&sum, &kahanc);
|
||
for(size_t q = 0; q <= qmax; ++q) {
|
||
int p = n+nu-2*q;
|
||
double Pp = legendre_buf[gsl_sf_legendre_array_index(p, abs(mu-m))];
|
||
complex double zp = bessel_buf[p];
|
||
complex double multiplier = c->A_multipliers[i][q];
|
||
ckahanadd(&sum, &kahanc, Pp * zp * multiplier);
|
||
}
|
||
complex double eimf = cexp(I*(mu-m)*kdlj.phi);
|
||
return sum * eimf;
|
||
}
|
||
|
||
complex double qpms_trans_calculator_get_A_buf(const qpms_trans_calculator *c,
|
||
int m, int n, int mu, int nu, sph_t kdlj,
|
||
bool r_ge_d, qpms_bessel_t J,
|
||
complex double *bessel_buf, double *legendre_buf) {
|
||
// This functions gets preallocated memory for bessel and legendre functions, but computes them itself
|
||
if (r_ge_d) J = QPMS_BESSEL_REGULAR;
|
||
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR)
|
||
// TODO warn?
|
||
return NAN+I*NAN;
|
||
int csphase = qpms_normalisation_t_csphase(c->normalisation);
|
||
switch(qpms_normalisation_t_normonly(c->normalisation)) {
|
||
// TODO use normalised legendre functions for Taylor and Kristensson
|
||
case QPMS_NORMALISATION_TAYLOR:
|
||
case QPMS_NORMALISATION_KRISTENSSON:
|
||
case QPMS_NORMALISATION_NONE:
|
||
#ifdef USE_XU_ANTINORMALISATION
|
||
case QPMS_NORMALISATION_XU:
|
||
#endif
|
||
{
|
||
double costheta = cos(kdlj.theta);
|
||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu,
|
||
costheta,csphase,legendre_buf)) abort();
|
||
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort();
|
||
return qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu,
|
||
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
|
||
}
|
||
break;
|
||
default:
|
||
abort();
|
||
}
|
||
assert(0);
|
||
}
|
||
|
||
static inline complex double qpms_trans_calculator_get_B_precalcbuf(const qpms_trans_calculator *c,
|
||
int m, int n, int mu, int nu, sph_t kdlj,
|
||
bool r_ge_d, qpms_bessel_t J,
|
||
const complex double *bessel_buf, const double *legendre_buf) {
|
||
size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
|
||
size_t qmax = c->B_multipliers[i+1] - c->B_multipliers[i] - (1 - BQ_OFFSET);
|
||
assert(qmax == gauntB_Q_max(-m,n,mu,nu));
|
||
complex double sum, kahanc;
|
||
ckahaninit(&sum, &kahanc);
|
||
for(int q = BQ_OFFSET; q <= qmax; ++q) {
|
||
int p = n+nu-2*q;
|
||
double Pp_ = legendre_buf[gsl_sf_legendre_array_index(p+1, abs(mu-m))];
|
||
complex double zp_ = bessel_buf[p+1];
|
||
complex double multiplier = c->B_multipliers[i][q-BQ_OFFSET];
|
||
ckahanadd(&sum, &kahanc, Pp_ * zp_ * multiplier);
|
||
}
|
||
complex double eimf = cexp(I*(mu-m)*kdlj.phi);
|
||
return sum * eimf;
|
||
}
|
||
|
||
complex double qpms_trans_calculator_get_B_buf(const qpms_trans_calculator *c,
|
||
int m, int n, int mu, int nu, sph_t kdlj,
|
||
bool r_ge_d, qpms_bessel_t J,
|
||
complex double *bessel_buf, double *legendre_buf) {
|
||
// This functions gets preallocated memory for bessel and legendre functions, but computes them itself
|
||
if (r_ge_d) J = QPMS_BESSEL_REGULAR;
|
||
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR)
|
||
// TODO warn?
|
||
return NAN+I*NAN;
|
||
int csphase = qpms_normalisation_t_csphase(c->normalisation);
|
||
switch(qpms_normalisation_t_normonly(c->normalisation)) {
|
||
case QPMS_NORMALISATION_TAYLOR:
|
||
case QPMS_NORMALISATION_KRISTENSSON:
|
||
case QPMS_NORMALISATION_NONE:
|
||
#ifdef USE_XU_ANTINORMALISATION
|
||
case QPMS_NORMALISATION_XU:
|
||
#endif
|
||
{
|
||
double costheta = cos(kdlj.theta);
|
||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
|
||
costheta,csphase,legendre_buf)) abort();
|
||
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort();
|
||
return qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu,
|
||
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
|
||
}
|
||
break;
|
||
default:
|
||
abort();
|
||
}
|
||
assert(0);
|
||
}
|
||
|
||
int qpms_trans_calculator_get_AB_buf_p(const qpms_trans_calculator *c,
|
||
complex double *Adest, complex double *Bdest,
|
||
int m, int n, int mu, int nu, sph_t kdlj,
|
||
bool r_ge_d, qpms_bessel_t J,
|
||
complex double *bessel_buf, double *legendre_buf) {
|
||
if (r_ge_d) J = QPMS_BESSEL_REGULAR;
|
||
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) {
|
||
*Adest = NAN+I*NAN;
|
||
*Bdest = NAN+I*NAN;
|
||
// TODO warn? different return value?
|
||
return 0;
|
||
}
|
||
switch(qpms_normalisation_t_normonly(c->normalisation)) {
|
||
case QPMS_NORMALISATION_TAYLOR:
|
||
case QPMS_NORMALISATION_KRISTENSSON:
|
||
case QPMS_NORMALISATION_NONE:
|
||
#ifdef USE_XU_ANTINORMALISATION
|
||
case QPMS_NORMALISATION_XU:
|
||
#endif
|
||
{
|
||
double costheta = cos(kdlj.theta);
|
||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
|
||
costheta,-1,legendre_buf)) abort();
|
||
if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort();
|
||
*Adest = qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu,
|
||
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
|
||
*Bdest = qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu,
|
||
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
|
||
return 0;
|
||
}
|
||
break;
|
||
default:
|
||
abort();
|
||
}
|
||
assert(0);
|
||
}
|
||
|
||
|
||
int qpms_trans_calculator_get_AB_arrays_buf(const qpms_trans_calculator *c,
|
||
complex double *Adest, complex double *Bdest,
|
||
size_t deststride, size_t srcstride,
|
||
sph_t kdlj, bool r_ge_d, qpms_bessel_t J,
|
||
complex double *bessel_buf, double *legendre_buf) {
|
||
if (r_ge_d) J = QPMS_BESSEL_REGULAR;
|
||
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) {
|
||
for (size_t i = 0; i < c->nelem; ++i)
|
||
for (size_t j = 0; j < c->nelem; ++j) {
|
||
*(Adest + i*srcstride + j*deststride) = NAN+I*NAN;
|
||
*(Bdest + i*srcstride + j*deststride) = NAN+I*NAN;
|
||
}
|
||
// TODO warn? different return value?
|
||
return 0;
|
||
}
|
||
switch(qpms_normalisation_t_normonly(c->normalisation)) {
|
||
case QPMS_NORMALISATION_TAYLOR:
|
||
case QPMS_NORMALISATION_POWER:
|
||
case QPMS_NORMALISATION_NONE:
|
||
{
|
||
double costheta = cos(kdlj.theta);
|
||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,2*c->lMax+1,
|
||
costheta,-1,legendre_buf)) abort();
|
||
if (qpms_sph_bessel_fill(J, 2*c->lMax+1, kdlj.r, bessel_buf)) abort();
|
||
size_t desti = 0, srci = 0;
|
||
for (int n = 1; n <= c->lMax; ++n) for (int m = -n; m <= n; ++m) {
|
||
for (int nu = 1; nu <= c->lMax; ++nu) for (int mu = -nu; mu <= nu; ++mu) {
|
||
#ifndef NDEBUG
|
||
size_t assertindex = qpms_trans_calculator_index_mnmunu(c,m,n,mu,nu);
|
||
#endif
|
||
assert(assertindex == desti*c->nelem + srci);
|
||
*(Adest + deststride * desti + srcstride * srci) =
|
||
qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu,
|
||
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
|
||
*(Bdest + deststride * desti + srcstride * srci) =
|
||
qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu,
|
||
kdlj,r_ge_d,J,bessel_buf,legendre_buf);
|
||
++srci;
|
||
}
|
||
++desti;
|
||
srci = 0;
|
||
}
|
||
return 0;
|
||
}
|
||
break;
|
||
default:
|
||
abort();
|
||
}
|
||
assert(0);
|
||
}
|
||
|
||
complex double qpms_trans_calculator_get_A(const qpms_trans_calculator *c,
|
||
int m, int n, int mu, int nu, sph_t kdlj,
|
||
bool r_ge_d, qpms_bessel_t J) {
|
||
double leg[gsl_sf_legendre_array_n(n+nu)];
|
||
complex double bes[n+nu+1]; // maximum order is 2n for A coeffs, plus the zeroth.
|
||
return qpms_trans_calculator_get_A_buf(c,m,n,mu,nu,kdlj,r_ge_d,J,
|
||
bes,leg);
|
||
}
|
||
|
||
complex double qpms_trans_calculator_get_B(const qpms_trans_calculator *c,
|
||
int m, int n, int mu, int nu, sph_t kdlj,
|
||
bool r_ge_d, qpms_bessel_t J) {
|
||
double leg[gsl_sf_legendre_array_n(n+nu+1)];
|
||
complex double bes[n+nu+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth.
|
||
return qpms_trans_calculator_get_B_buf(c,m,n,mu,nu,kdlj,r_ge_d,J,
|
||
bes,leg);
|
||
}
|
||
|
||
int qpms_trans_calculator_get_AB_p(const qpms_trans_calculator *c,
|
||
complex double *Adest, complex double *Bdest,
|
||
int m, int n, int mu, int nu, sph_t kdlj,
|
||
bool r_ge_d, qpms_bessel_t J) {
|
||
double leg[gsl_sf_legendre_array_n(2*c->lMax+1)];
|
||
complex double bes[2*c->lMax+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth.
|
||
return qpms_trans_calculator_get_AB_buf_p(c,Adest, Bdest,m,n,mu,nu,kdlj,r_ge_d,J,
|
||
bes,leg);
|
||
}
|
||
|
||
int qpms_trans_calculator_get_AB_arrays(const qpms_trans_calculator *c,
|
||
complex double *Adest, complex double *Bdest,
|
||
size_t deststride, size_t srcstride,
|
||
sph_t kdlj, bool r_ge_d, qpms_bessel_t J) {
|
||
double leg[gsl_sf_legendre_array_n(c->lMax+c->lMax+1)];
|
||
complex double bes[2*c->lMax+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth.
|
||
return qpms_trans_calculator_get_AB_arrays_buf(c,
|
||
Adest, Bdest, deststride, srcstride,
|
||
kdlj, r_ge_d, J,
|
||
bes, leg);
|
||
}
|
||
|
||
|
||
#ifdef LATTICESUMS
|
||
|
||
int qpms_trans_calculator_get_shortrange_AB_arrays_buf(const qpms_trans_calculator *c,
|
||
complex double *Adest, complex double *Bdest,
|
||
size_t deststride, size_t srcstride,
|
||
sph_t kdlj, qpms_bessel_t J,
|
||
qpms_l_t lrcutoff, unsigned kappa, double cc, // regularisation params
|
||
complex double *bessel_buf, double *legendre_buf
|
||
) {
|
||
assert(J == QPMS_HANKEL_PLUS); // support only J == 3 for now
|
||
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) {
|
||
for (size_t i = 0; i < c->nelem; ++i)
|
||
for (size_t j = 0; j < c->nelem; ++j) {
|
||
*(Adest + i*srcstride + j*deststride) = NAN+I*NAN;
|
||
*(Bdest + i*srcstride + j*deststride) = NAN+I*NAN;
|
||
}
|
||
// TODO warn? different return value?
|
||
return 0;
|
||
}
|
||
switch(qpms_normalisation_t_normonly(c->normalisation)) {
|
||
case QPMS_NORMALISATION_TAYLOR:
|
||
case QPMS_NORMALISATION_POWER:
|
||
case QPMS_NORMALISATION_NONE:
|
||
{
|
||
double costheta = cos(kdlj.theta);
|
||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,2*c->lMax+1,
|
||
costheta,-1,legendre_buf)) abort();
|
||
// if (qpms_sph_bessel_fill(J, 2*c->lMax+1, kdlj.r, bessel_buf)) abort(); // original
|
||
hankelparts_fill(NULL, bessel_buf, 2*c->lMax+1, lrcutoff, c->hct, kappa, cc, kdlj.r);
|
||
size_t desti = 0, srci = 0;
|
||
for (int n = 1; n <= c->lMax; ++n) for (int m = -n; m <= n; ++m) {
|
||
for (int nu = 1; nu <= c->lMax; ++nu) for (int mu = -nu; mu <= nu; ++mu) {
|
||
size_t assertindex = qpms_trans_calculator_index_mnmunu(c,m,n,mu,nu);
|
||
assert(assertindex == desti*c->nelem + srci);
|
||
*(Adest + deststride * desti + srcstride * srci) =
|
||
qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu,
|
||
kdlj,false,J,bessel_buf,legendre_buf);
|
||
*(Bdest + deststride * desti + srcstride * srci) =
|
||
qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu,
|
||
kdlj,false,J,bessel_buf,legendre_buf);
|
||
++srci;
|
||
}
|
||
++desti;
|
||
srci = 0;
|
||
}
|
||
return 0;
|
||
}
|
||
break;
|
||
default:
|
||
abort();
|
||
}
|
||
assert(0);
|
||
}
|
||
|
||
int qpms_trans_calculator_get_shortrange_AB_buf_p(const qpms_trans_calculator *c,
|
||
complex double *Adest, complex double *Bdest,
|
||
int m, int n, int mu, int nu, sph_t kdlj,
|
||
qpms_bessel_t J,
|
||
qpms_l_t lrcutoff, unsigned kappa, double cc, // regularisation params
|
||
complex double *bessel_buf, double *legendre_buf) {
|
||
assert(J == QPMS_HANKEL_PLUS); // support only J == 3 for now
|
||
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) {
|
||
*Adest = NAN+I*NAN;
|
||
*Bdest = NAN+I*NAN;
|
||
// TODO warn? different return value?
|
||
return 0;
|
||
}
|
||
switch(qpms_normalisation_t_normonly(c->normalisation)) {
|
||
case QPMS_NORMALISATION_TAYLOR:
|
||
case QPMS_NORMALISATION_KRISTENSSON:
|
||
case QPMS_NORMALISATION_NONE:
|
||
{
|
||
double costheta = cos(kdlj.theta);
|
||
if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
|
||
costheta,-1,legendre_buf)) abort();
|
||
//if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort(); // original
|
||
hankelparts_fill(NULL, bessel_buf, 2*c->lMax+1, lrcutoff, c->hct, kappa, cc, kdlj.r);
|
||
|
||
*Adest = qpms_trans_calculator_get_A_precalcbuf(c,m,n,mu,nu,
|
||
kdlj,false,J,bessel_buf,legendre_buf);
|
||
*Bdest = qpms_trans_calculator_get_B_precalcbuf(c,m,n,mu,nu,
|
||
kdlj,false,J,bessel_buf,legendre_buf);
|
||
return 0;
|
||
}
|
||
break;
|
||
default:
|
||
abort();
|
||
}
|
||
assert(0);
|
||
}
|
||
|
||
// Short-range parts of the translation coefficients
|
||
int qpms_trans_calculator_get_shortrange_AB_p(const qpms_trans_calculator *c,
|
||
complex double *Adest, complex double *Bdest,
|
||
qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t kdlj,
|
||
qpms_bessel_t J /* Only J=3 valid for now */,
|
||
qpms_l_t lrcutoff, unsigned kappa, double cc) {
|
||
double leg[gsl_sf_legendre_array_n(2*c->lMax+1)];
|
||
complex double bes[2*c->lMax+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth.
|
||
return qpms_trans_calculator_get_shortrange_AB_buf_p(c,Adest, Bdest,m,n,mu,nu,kdlj,J,
|
||
lrcutoff, kappa, cc,
|
||
bes, leg);
|
||
}
|
||
|
||
int qpms_trans_calculator_get_shortrange_AB_arrays(const qpms_trans_calculator *c,
|
||
complex double *Adest, complex double *Bdest,
|
||
size_t deststride, size_t srcstride,
|
||
sph_t kdlj, qpms_bessel_t J /* Only J=3 valid for now */,
|
||
qpms_l_t lrcutoff, unsigned kappa, double cc) {
|
||
double leg[gsl_sf_legendre_array_n(c->lMax+c->lMax+1)];
|
||
complex double bes[2*c->lMax+2]; // maximum order is 2n+1 for B coeffs, plus the zeroth.
|
||
return qpms_trans_calculator_get_shortrange_AB_arrays_buf(c,
|
||
Adest, Bdest, deststride, srcstride,
|
||
kdlj, J,
|
||
lrcutoff, kappa, cc,
|
||
bes, leg);
|
||
}
|
||
|
||
|
||
// Long-range parts
|
||
static inline complex double qpms_trans_calculator_get_2DFT_longrange_A_precalcbuf(const qpms_trans_calculator *c,
|
||
int m, int n, int mu, int nu, sph_t k_sph /* theta must be M_PI_2 */,
|
||
qpms_bessel_t J /* must be 3 for now */,
|
||
const complex double *lrhankel_recparts_buf) {
|
||
assert(J == QPMS_HANKEL_PLUS);
|
||
//assert(k_sph.theta == M_PI_2); CHECK IN ADVANCE INSTEAD
|
||
//assert(k_sph.r > 0);
|
||
size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
|
||
size_t qmax = c->A_multipliers[i+1] - c->A_multipliers[i] - 1;
|
||
assert(qmax == gaunt_q_max(-m,n,mu,nu));
|
||
complex double sum, kahanc;
|
||
ckahaninit(&sum, &kahanc);
|
||
for(size_t q = 0; q <= qmax; ++q) {
|
||
int p = n+nu-2*q;
|
||
double Pp = c->legendre0[gsl_sf_legendre_array_index(p, abs(mu-m))];
|
||
complex double zp = trindex_cd(lrhankel_recparts_buf, p)[abs(mu-m)]; // orig: bessel_buf[p];
|
||
if (mu - m < 0) zp *= min1pow(mu-m); // DLMF 10.4.1
|
||
complex double multiplier = c->A_multipliers[i][q];
|
||
ckahanadd(&sum, &kahanc, Pp * zp * multiplier);
|
||
}
|
||
complex double eimf = cexp(I*(mu-m)*k_sph.phi);
|
||
return sum * eimf * ipow(mu-m);
|
||
}
|
||
|
||
static inline complex double qpms_trans_calculator_get_2DFT_longrange_B_precalcbuf(const qpms_trans_calculator *c,
|
||
int m, int n, int mu, int nu, sph_t k_sph /* theta must be M_PI_2 */,
|
||
qpms_bessel_t J /* must be 3 for now */,
|
||
const complex double *lrhankel_recparts_buf) {
|
||
assert(J == QPMS_HANKEL_PLUS);
|
||
size_t i = qpms_trans_calculator_index_mnmunu(c, m, n, mu, nu);
|
||
size_t qmax = c->B_multipliers[i+1] - c->B_multipliers[i] - (1 - BQ_OFFSET);
|
||
assert(qmax == gauntB_Q_max(-m,n,mu,nu));
|
||
complex double sum, kahanc;
|
||
ckahaninit(&sum, &kahanc);
|
||
for(int q = BQ_OFFSET; q <= qmax; ++q) {
|
||
int p = n+nu-2*q;
|
||
double Pp_ = c->legendre0[gsl_sf_legendre_array_index(p+1, abs(mu-m))];
|
||
complex double zp_ = trindex_cd(lrhankel_recparts_buf, p+1)[abs(mu-m)]; // orig: bessel_buf[p+1];
|
||
if (mu - m < 0) zp_ *= min1pow(mu-m); // DLMF 10.4.1
|
||
complex double multiplier = c->B_multipliers[i][q-BQ_OFFSET];
|
||
ckahanadd(&sum, &kahanc, Pp_ * zp_ * multiplier);
|
||
}
|
||
complex double eimf = cexp(I*(mu-m)*k_sph.phi);
|
||
return sum * eimf * ipow(mu-m);
|
||
}
|
||
|
||
int qpms_trans_calculator_get_2DFT_longrange_AB_buf_p(const qpms_trans_calculator *c,
|
||
complex double *Adest, complex double *Bdest,
|
||
int m, int n, int mu, int nu, sph_t k_sph,
|
||
qpms_bessel_t J,
|
||
qpms_l_t lrk_cutoff, unsigned kappa, double cv, double k0,
|
||
complex double *lrhankel_recparts_buf) {
|
||
|
||
assert (J == QPMS_HANKEL_PLUS);
|
||
assert(k_sph.theta == M_PI_2);
|
||
|
||
switch(qpms_normalisation_t_normonly(c->normalisation)) {
|
||
case QPMS_NORMALISATION_TAYLOR:
|
||
case QPMS_NORMALISATION_KRISTENSSON:
|
||
case QPMS_NORMALISATION_NONE:
|
||
#ifdef USE_XU_ANTINORMALISATION
|
||
case QPMS_NORMALISATION_XU:
|
||
#endif
|
||
{
|
||
//double costheta = cos(kdlj.theta);
|
||
//if (gsl_sf_legendre_array_e(GSL_SF_LEGENDRE_NONE,n+nu+1,
|
||
// costheta,-1,legendre_buf)) abort();
|
||
//if (qpms_sph_bessel_fill(J, n+nu+1, kdlj.r, bessel_buf)) abort();
|
||
lrhankel_recpart_fill(lrhankel_recparts_buf, 2*c->lMax+1 /* TODO n+nu+1 might be enough */,
|
||
lrk_cutoff, c->hct, kappa, cv, k0, k_sph.r);
|
||
*Adest = qpms_trans_calculator_get_2DFT_longrange_A_precalcbuf(c,m,n,mu,nu,
|
||
k_sph,J,lrhankel_recparts_buf);
|
||
*Bdest = qpms_trans_calculator_get_2DFT_longrange_B_precalcbuf(c,m,n,mu,nu,
|
||
k_sph,J,lrhankel_recparts_buf);
|
||
return 0;
|
||
}
|
||
break;
|
||
default:
|
||
abort();
|
||
}
|
||
assert(0);
|
||
}
|
||
|
||
// Fourier transforms of the long-range parts of the translation coefficients
|
||
int qpms_trans_calculator_get_2DFT_longrange_AB_p(const qpms_trans_calculator *c,
|
||
complex double *Adest, complex double *Bdest,
|
||
qpms_m_t m, qpms_l_t n, qpms_m_t mu, qpms_l_t nu, sph_t k_sph,
|
||
qpms_bessel_t J /* Only J=3 valid for now */,
|
||
qpms_l_t lrcutoff, unsigned kappa, double cv, double k0) {
|
||
int maxp = 2*c->lMax+1; // TODO this may not be needed here, n+nu+1 could be enough instead
|
||
complex double lrhankel_recpart[maxp * (maxp+1) / 2];
|
||
return qpms_trans_calculator_get_2DFT_longrange_AB_buf_p(c, Adest, Bdest,m,n,mu,nu,k_sph,
|
||
J, lrcutoff, kappa, cv, k0, lrhankel_recpart);
|
||
}
|
||
|
||
int qpms_trans_calculator_get_2DFT_longrange_AB_arrays_buf(const qpms_trans_calculator *c,
|
||
complex double *Adest, complex double *Bdest,
|
||
size_t deststride, size_t srcstride,
|
||
sph_t k_sph, qpms_bessel_t J /* must be 3 for now */,
|
||
qpms_l_t lrk_cutoff, unsigned kappa, double cv, double k0,
|
||
complex double *lrhankel_recparts_buf) {
|
||
assert(J == QPMS_HANKEL_PLUS);
|
||
assert(k_sph.theta == M_PI_2);
|
||
#if 0
|
||
if (0 == kdlj.r && J != QPMS_BESSEL_REGULAR) {
|
||
for (size_t i = 0; i < c->nelem; ++i)
|
||
for (size_t j = 0; j < c->nelem; ++j) {
|
||
*(Adest + i*srcstride + j*deststride) = NAN+I*NAN;
|
||
*(Bdest + i*srcstride + j*deststride) = NAN+I*NAN;
|
||
}
|
||
// TODO warn? different return value?
|
||
return 0;
|
||
}
|
||
#endif
|
||
switch(qpms_normalisation_t_normonly(c->normalisation)) {
|
||
case QPMS_NORMALISATION_TAYLOR:
|
||
case QPMS_NORMALISATION_POWER:
|
||
case QPMS_NORMALISATION_NONE:
|
||
{
|
||
lrhankel_recpart_fill(lrhankel_recparts_buf, 2*c->lMax+1,
|
||
lrk_cutoff, c->hct, kappa, cv, k0, k_sph.r);
|
||
// if (qpms_sph_bessel_fill(J, 2*c->lMax+1, kdlj.r, bessel_buf)) abort();
|
||
size_t desti = 0, srci = 0;
|
||
for (int n = 1; n <= c->lMax; ++n) for (int m = -n; m <= n; ++m) {
|
||
for (int nu = 1; nu <= c->lMax; ++nu) for (int mu = -nu; mu <= nu; ++mu) {
|
||
size_t assertindex = qpms_trans_calculator_index_mnmunu(c,m,n,mu,nu);
|
||
assert(assertindex == desti*c->nelem + srci);
|
||
*(Adest + deststride * desti + srcstride * srci) =
|
||
qpms_trans_calculator_get_2DFT_longrange_A_precalcbuf(c,m,n,mu,nu,
|
||
k_sph,J,lrhankel_recparts_buf);
|
||
*(Bdest + deststride * desti + srcstride * srci) =
|
||
qpms_trans_calculator_get_2DFT_longrange_B_precalcbuf(c,m,n,mu,nu,
|
||
k_sph,J,lrhankel_recparts_buf);
|
||
++srci;
|
||
}
|
||
++desti;
|
||
srci = 0;
|
||
}
|
||
return 0;
|
||
}
|
||
break;
|
||
default:
|
||
abort();
|
||
}
|
||
assert(0);
|
||
}
|
||
|
||
|
||
int qpms_trans_calculator_get_2DFT_longrange_AB_arrays(const qpms_trans_calculator *c,
|
||
complex double *Adest, complex double *Bdest,
|
||
size_t deststride, size_t srcstride,
|
||
sph_t k_sph, qpms_bessel_t J /* Only J=3 valid for now */,
|
||
qpms_l_t lrcutoff, unsigned kappa, double cv, double k0) {
|
||
int maxp = 2*c->lMax+1;
|
||
complex double lrhankel_recpart[maxp * (maxp+1) / 2];
|
||
return qpms_trans_calculator_get_2DFT_longrange_AB_arrays_buf(c,
|
||
Adest, Bdest, deststride, srcstride, k_sph, J,
|
||
lrcutoff, kappa, cv, k0,
|
||
lrhankel_recpart);
|
||
}
|
||
|
||
#endif // LATTICESUMS
|
||
|
||
|
||
complex double qpms_trans_calculator_get_A_ext(const qpms_trans_calculator *c,
|
||
int m, int n, int mu, int nu,
|
||
double kdlj_r, double kdlj_theta, double kdlj_phi,
|
||
int r_ge_d, int J) {
|
||
sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi};
|
||
return qpms_trans_calculator_get_A(c,m,n,mu,nu,kdlj,r_ge_d,J);
|
||
}
|
||
|
||
complex double qpms_trans_calculator_get_B_ext(const qpms_trans_calculator *c,
|
||
int m, int n, int mu, int nu,
|
||
double kdlj_r, double kdlj_theta, double kdlj_phi,
|
||
int r_ge_d, int J) {
|
||
sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi};
|
||
return qpms_trans_calculator_get_B(c,m,n,mu,nu,kdlj,r_ge_d,J);
|
||
}
|
||
|
||
int qpms_trans_calculator_get_AB_p_ext(const qpms_trans_calculator *c,
|
||
complex double *Adest, complex double *Bdest,
|
||
int m, int n, int mu, int nu,
|
||
double kdlj_r, double kdlj_theta, double kdlj_phi,
|
||
int r_ge_d, int J) {
|
||
sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi};
|
||
return qpms_trans_calculator_get_AB_p(c,Adest,Bdest,m,n,mu,nu,kdlj,r_ge_d,J);
|
||
}
|
||
|
||
int qpms_trans_calculator_get_AB_arrays_ext(const qpms_trans_calculator *c,
|
||
complex double *Adest, complex double *Bdest,
|
||
size_t deststride, size_t srcstride,
|
||
double kdlj_r, double kdlj_theta, double kdlj_phi,
|
||
int r_ge_d, int J) {
|
||
sph_t kdlj = {kdlj_r, kdlj_theta, kdlj_phi};
|
||
return qpms_trans_calculator_get_AB_arrays(c,Adest,Bdest,deststride,srcstride,
|
||
kdlj, r_ge_d, J);
|
||
}
|
||
#ifdef QPMS_COMPILE_PYTHON_EXTENSIONS
|
||
#include <string.h>
|
||
|
||
#ifdef QPMS_USE_OMP
|
||
#include <omp.h>
|
||
#endif
|
||
|
||
int qpms_cython_trans_calculator_get_AB_arrays_loop(
|
||
const qpms_trans_calculator *c, const qpms_bessel_t J, const int resnd,
|
||
const int daxis, const int saxis,
|
||
char *A_data, const npy_intp *A_shape, const npy_intp *A_strides,
|
||
char *B_data, const npy_intp *B_shape, const npy_intp *B_strides,
|
||
const char *r_data, const npy_intp *r_shape, const npy_intp *r_strides,
|
||
const char *theta_data, const npy_intp *theta_shape, const npy_intp *theta_strides,
|
||
const char *phi_data, const npy_intp *phi_shape, const npy_intp *phi_strides,
|
||
const char *r_ge_d_data, const npy_intp *r_ge_d_shape, const npy_intp *r_ge_d_strides){
|
||
assert(daxis != saxis);
|
||
assert(resnd >= 2);
|
||
int longest_axis = 0;
|
||
int longestshape = 1;
|
||
const npy_intp *resultshape = A_shape, *resultstrides = A_strides;
|
||
// TODO put some restrict's everywhere?
|
||
for (int ax = 0; ax < resnd; ++ax){
|
||
assert(A_shape[ax] == B_shape[ax]);
|
||
assert(A_strides[ax] == B_strides[ax]);
|
||
if (daxis == ax || saxis == ax) continue;
|
||
if (A_shape[ax] > longestshape) {
|
||
longest_axis = ax;
|
||
longestshape = 1;
|
||
}
|
||
}
|
||
const npy_intp longlen = resultshape[longest_axis];
|
||
|
||
npy_intp innerloop_shape[resnd];
|
||
for (int ax = 0; ax < resnd; ++ax) {
|
||
innerloop_shape[ax] = resultshape[ax];
|
||
}
|
||
/* longest axis will be iterated in the outer (parallelized) loop.
|
||
* Therefore, longest axis, together with saxis and daxis,
|
||
* will not be iterated in the inner loop:
|
||
*/
|
||
innerloop_shape[longest_axis] = 1;
|
||
innerloop_shape[daxis] = 1;
|
||
innerloop_shape[saxis] = 1;
|
||
|
||
// these are the 'strides' passed to the qpms_trans_calculator_get_AB_arrays_ext
|
||
// function, which expects 'const double *' strides, not 'char *' ones.
|
||
const npy_intp dstride = resultstrides[daxis] / sizeof(complex double);
|
||
const npy_intp sstride = resultstrides[saxis] / sizeof(complex double);
|
||
|
||
int errval = 0;
|
||
// TODO here start parallelisation
|
||
//#pragma omp parallel
|
||
{
|
||
npy_intp local_indices[resnd];
|
||
memset(local_indices, 0, sizeof(local_indices));
|
||
int errval_local = 0;
|
||
size_t longi;
|
||
//#pragma omp for
|
||
for(longi = 0; longi < longlen; ++longi) {
|
||
// this might be done also in the inverse order, but this is more
|
||
// 'c-contiguous' way of incrementing the indices
|
||
int ax = resnd - 1;
|
||
while(ax >= 0) {
|
||
/* calculate the correct index/pointer for each array used.
|
||
* This can be further optimized from O(resnd * total size of
|
||
* the result array) to O(total size of the result array), but
|
||
* fick that now
|
||
*/
|
||
const char *r_p = r_data + r_strides[longest_axis] * longi;
|
||
const char *theta_p = theta_data + theta_strides[longest_axis] * longi;
|
||
const char *phi_p = phi_data + phi_strides[longest_axis] * longi;
|
||
const char *r_ge_d_p = r_ge_d_data + r_ge_d_strides[longest_axis] * longi;
|
||
char *A_p = A_data + A_strides[longest_axis] * longi;
|
||
char *B_p = B_data + B_strides[longest_axis] * longi;
|
||
for(int i = 0; i < resnd; ++i) {
|
||
// following two lines are probably not needed, as innerloop_shape is there 1 anyway
|
||
// so if i == daxis, saxis, or longest_axis, local_indices[i] is zero.
|
||
if (i == longest_axis) continue;
|
||
if (daxis == i || saxis == i) continue;
|
||
r_p += r_strides[i] * local_indices[i];
|
||
theta_p += theta_strides[i] * local_indices[i];
|
||
phi_p += phi_strides[i] * local_indices[i];
|
||
A_p += A_strides[i] * local_indices[i];
|
||
B_p += B_strides[i] * local_indices[i];
|
||
}
|
||
|
||
// perform the actual task here
|
||
errval_local |= qpms_trans_calculator_get_AB_arrays_ext(c, (complex double *)A_p,
|
||
(complex double *)B_p,
|
||
dstride, sstride,
|
||
// FIXME change all the _ext function types to npy_... so that
|
||
// these casts are not needed
|
||
*((double *) r_p), *((double *) theta_p), *((double *)phi_p),
|
||
(int)(*((npy_bool *) r_ge_d_p)), J);
|
||
if (errval_local) abort();
|
||
|
||
// increment the last index 'digit' (ax is now resnd-1; we don't have do-while loop in python)
|
||
++local_indices[ax];
|
||
while(local_indices[ax] == innerloop_shape[ax] && ax >= 0) {
|
||
// overflow to the next digit but stop when reached below the last one
|
||
local_indices[ax] = 0;
|
||
//local_indices[--ax]++; // dekrementace indexu pod nulu a následná inkrementace poruší paměť FIXME
|
||
ax--;
|
||
if (ax >= 0) local_indices[ax]++;
|
||
}
|
||
if (ax >= 0) // did not overflow, get back to the lowest index
|
||
ax = resnd - 1;
|
||
}
|
||
}
|
||
errval |= errval_local;
|
||
}
|
||
// FIXME when parallelizing
|
||
// TODO Here end parallelisation
|
||
return errval;
|
||
}
|
||
|
||
|
||
#endif // QPMS_COMPILE_PYTHON_EXTENSIONS
|
||
|