748 lines
17 KiB
Plaintext
748 lines
17 KiB
Plaintext
#LyX 2.0 created this file. For more info see http://www.lyx.org/
|
|
\lyxformat 413
|
|
\begin_document
|
|
\begin_header
|
|
\textclass report
|
|
\begin_preamble
|
|
%\renewcommand*{\chapterheadstartvskip}{\vspace*{1cm}}
|
|
%\renewcommand*{\chapterheadendvskip}{\vspace{2cm}}
|
|
\end_preamble
|
|
\use_default_options true
|
|
\maintain_unincluded_children false
|
|
\language english
|
|
\language_package default
|
|
\inputencoding auto
|
|
\fontencoding global
|
|
\font_roman TeX Gyre Pagella
|
|
\font_sans default
|
|
\font_typewriter default
|
|
\font_default_family default
|
|
\use_non_tex_fonts true
|
|
\font_sc false
|
|
\font_osf true
|
|
\font_sf_scale 100
|
|
\font_tt_scale 100
|
|
|
|
\graphics default
|
|
\default_output_format pdf4
|
|
\output_sync 0
|
|
\bibtex_command default
|
|
\index_command default
|
|
\paperfontsize default
|
|
\spacing single
|
|
\use_hyperref true
|
|
\pdf_title "Sähköpajan päiväkirja"
|
|
\pdf_author "Marek Nečada"
|
|
\pdf_bookmarks true
|
|
\pdf_bookmarksnumbered false
|
|
\pdf_bookmarksopen false
|
|
\pdf_bookmarksopenlevel 1
|
|
\pdf_breaklinks false
|
|
\pdf_pdfborder false
|
|
\pdf_colorlinks false
|
|
\pdf_backref false
|
|
\pdf_pdfusetitle true
|
|
\papersize a5paper
|
|
\use_geometry true
|
|
\use_amsmath 1
|
|
\use_esint 1
|
|
\use_mhchem 1
|
|
\use_mathdots 1
|
|
\cite_engine basic
|
|
\use_bibtopic false
|
|
\use_indices false
|
|
\paperorientation portrait
|
|
\suppress_date false
|
|
\use_refstyle 1
|
|
\index Index
|
|
\shortcut idx
|
|
\color #008000
|
|
\end_index
|
|
\leftmargin 2cm
|
|
\topmargin 2cm
|
|
\rightmargin 2cm
|
|
\bottommargin 2cm
|
|
\secnumdepth 3
|
|
\tocdepth 3
|
|
\paragraph_separation indent
|
|
\paragraph_indentation default
|
|
\quotes_language swedish
|
|
\papercolumns 1
|
|
\papersides 1
|
|
\paperpagestyle default
|
|
\tracking_changes false
|
|
\output_changes false
|
|
\html_math_output 0
|
|
\html_css_as_file 0
|
|
\html_be_strict false
|
|
\end_header
|
|
|
|
\begin_body
|
|
|
|
\begin_layout Standard
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\vect}[1]{\mathbf{#1}}
|
|
\end_inset
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
\newcommand{\ud}{\mathrm{d}}
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Title
|
|
Electromagnetic multiple scattering, spherical waves and ****
|
|
\end_layout
|
|
|
|
\begin_layout Author
|
|
Marek Nečada
|
|
\end_layout
|
|
|
|
\begin_layout Chapter
|
|
Zillion conventions for spherical vector waves
|
|
\end_layout
|
|
|
|
\begin_layout Section
|
|
Legendre polynomials and spherical harmonics: messy from the very beginning
|
|
\end_layout
|
|
|
|
\begin_layout Subsection
|
|
Kristensson
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
\begin_inset Formula
|
|
\[
|
|
P_{l}^{-m}=\left(-1\right)^{m}\frac{\left(l-m\right)!}{\left(l+m\right)!}P_{l}^{m}\left(\cos\theta\right),\quad m\ge0
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
Kristensson uses the Condon-Shortley phase, so (sect.
|
|
[K]D.2)
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
\begin_inset Formula
|
|
\[
|
|
Y_{lm}\left(\hat{\vect r}\right)=\left(-1\right)^{m}\sqrt{\frac{2l+1}{4\pi}\frac{\left(l-m\right)!}{\left(l+m\right)!}}P_{l}^{m}\left(\cos\theta\right)e^{im\phi}
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\begin_inset Formula
|
|
\[
|
|
Y_{lm}^{\dagger}\left(\hat{\vect r}\right)=Y_{lm}^{*}\left(\hat{\vect r}\right)
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\begin_inset Formula
|
|
\[
|
|
Y_{l,-m}\left(\hat{\vect r}\right)=\left(-1\right)^{m}Y_{lm}^{\dagger}\left(\hat{\vect r}\right)
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Orthonormality:
|
|
\begin_inset Formula
|
|
\[
|
|
\int Y_{lm}\left(\hat{\vect r}\right)Y_{l'm'}^{\dagger}\left(\hat{\vect r}\right)\,\ud\Omega=\delta_{ll'}\delta_{mm'}
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Section
|
|
Pi and tau
|
|
\end_layout
|
|
|
|
\begin_layout Subsection
|
|
Taylor
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
\begin_inset Formula
|
|
\begin{eqnarray*}
|
|
\tilde{\pi}_{mn}\left(\cos\theta\right) & = & \sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}\frac{m}{\sin\theta}P_{n}^{m}\left(\cos\theta\right)\\
|
|
\tilde{\tau}_{mn}\left(\cos\theta\right) & = & \sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}\frac{\ud}{\ud\theta}P_{n}^{m}\left(\cos\theta\right)
|
|
\end{eqnarray*}
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Section
|
|
Vector spherical harmonics (?)
|
|
\end_layout
|
|
|
|
\begin_layout Subsection
|
|
Kristensson
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Original formulation, sect.
|
|
[K]D.3.3
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
\begin_inset Formula
|
|
\begin{eqnarray*}
|
|
\vect A_{1lm}\left(\hat{\vect r}\right) & = & \frac{1}{\sqrt{l\left(l+1\right)}}\left(\hat{\vect{\theta}}\frac{1}{\sin\theta}\frac{\partial}{\partial\phi}Y_{lm}\left(\hat{\vect r}\right)-\hat{\vect{\phi}}\frac{\partial}{\partial\theta}Y_{lm}\left(\hat{\vect r}\right)\right)\\
|
|
\vect A_{2lm}\left(\hat{\vect r}\right) & = & \frac{1}{\sqrt{l\left(l+1\right)}}\left(\hat{\vect{\theta}}\frac{\partial}{\partial\phi}Y_{lm}\left(\hat{\vect r}\right)-\hat{\vect{\phi}}\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}Y_{lm}\left(\hat{\vect r}\right)\right)\\
|
|
\vect A_{3lm}\left(\hat{\vect r}\right) & = & \hat{\vect r}Y_{lm}\left(\hat{\vect r}\right)
|
|
\end{eqnarray*}
|
|
|
|
\end_inset
|
|
|
|
Normalisation:
|
|
\begin_inset Formula
|
|
\[
|
|
\int\vect A_{n}\left(\hat{\vect r}\right)\cdot\vect A_{n'}^{\dagger}\left(\hat{\vect r}\right)\,\ud\Omega=\delta_{nn'}
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
Here
|
|
\begin_inset Formula $\mbox{ }^{\dagger}$
|
|
\end_inset
|
|
|
|
means just complex conjugate, apparently (see footnote on p.
|
|
89).
|
|
\end_layout
|
|
|
|
\begin_layout Section
|
|
Spherical Bessel functions
|
|
\begin_inset CommandInset label
|
|
LatexCommand label
|
|
name "sec:Spherical-Bessel-functions"
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
The radial dependence of spherical vector waves is given by the spherical
|
|
Bessel functions and their first derivatives.
|
|
Commonly, the following notation is adopted
|
|
\begin_inset Formula
|
|
\begin{eqnarray*}
|
|
z_{n}^{(1)}(x) & = & j_{n}(x),\\
|
|
z_{n}^{(2)}(x) & = & y_{n}(x),\\
|
|
z_{n}^{(3)}(x) & = & h_{n}^{(1)}(x)=j_{n}(x)+iy_{n}(x),\\
|
|
z_{n}^{(4)}(x) & = & h_{n}^{(2)}(x)=j_{n}(x)-iy_{n}(x).
|
|
\end{eqnarray*}
|
|
|
|
\end_inset
|
|
|
|
Here,
|
|
\begin_inset Formula $j_{n}$
|
|
\end_inset
|
|
|
|
is the spherical Bessel function of first kind (regular),
|
|
\begin_inset Formula $y_{j}$
|
|
\end_inset
|
|
|
|
is the spherical Bessel function of second kind (singular), and
|
|
\begin_inset Formula $h_{n}^{(1)},h_{n}^{(2)}$
|
|
\end_inset
|
|
|
|
are the Hankel functions a.k.a.
|
|
spherical Bessel functions of third kind.
|
|
In spherical vector waves,
|
|
\begin_inset Formula $j_{n}$
|
|
\end_inset
|
|
|
|
corresponds to regular waves,
|
|
\begin_inset Formula $h^{(1)}$
|
|
\end_inset
|
|
|
|
corresponds (by the usual convention) to outgoing waves, and
|
|
\begin_inset Formula $h^{(2)}$
|
|
\end_inset
|
|
|
|
corresponds to incoming waves.
|
|
To describe scattering, we need two sets of waves with two different types
|
|
of spherical Bessel functions
|
|
\begin_inset Formula $z_{n}^{(J)}$
|
|
\end_inset
|
|
|
|
.
|
|
Most common choice is
|
|
\begin_inset Formula $J=1,3$
|
|
\end_inset
|
|
|
|
, because if we decompose the field into spherical waves centered at
|
|
\begin_inset Formula $\vect r_{0}$
|
|
\end_inset
|
|
|
|
, the field produced by other sources (e.g.
|
|
spherical waves from other scatterers or a plane wave) is always regular
|
|
at
|
|
\begin_inset Formula $\vect r_{0}$
|
|
\end_inset
|
|
|
|
.
|
|
Second choice which makes a bit of sense is
|
|
\begin_inset Formula $J=3,4$
|
|
\end_inset
|
|
|
|
as it leads to a nice expression for the energy transport.
|
|
\end_layout
|
|
|
|
\begin_layout Section
|
|
Spherical vector waves
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
TODO
|
|
\begin_inset Formula $M,N,\psi,\chi,\widetilde{M},\widetilde{N},u,v,w,\dots$
|
|
\end_inset
|
|
|
|
, sine/cosine convention (B&H), ...
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
There are two mutually orthogonal types of divergence-free (everywhere except
|
|
in the origin for singular waves) spherical vector waves, which I call
|
|
electric and magnetic, given by the type of multipole source to which they
|
|
correspond.
|
|
This is another distinction than the regular/singular/ingoing/outgoing
|
|
waves given by the type of the radial dependence (cf.
|
|
section
|
|
\begin_inset CommandInset ref
|
|
LatexCommand ref
|
|
reference "sec:Spherical-Bessel-functions"
|
|
|
|
\end_inset
|
|
|
|
).
|
|
Oscillating electric current in a tiny rod parallel to its axis will generate
|
|
electric dipole waves (net dipole moment of magnetic current is zero) moment
|
|
, whereas oscillating electric current in a tiny circular loop will generate
|
|
magnetic dipole waves (net dipole moment of electric current is zero).
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
In the usual cases we encounter, the part described by the magnetic waves
|
|
is pretty small.
|
|
\end_layout
|
|
|
|
\begin_layout Subsection
|
|
Taylor
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Definition [T](2.40);
|
|
\begin_inset Formula $\widetilde{\vect N}_{mn}^{(j)},\widetilde{\vect M}_{mn}^{(j)}$
|
|
\end_inset
|
|
|
|
are the electric and magnetic waves, respectively:
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
\begin_inset Formula
|
|
\begin{eqnarray*}
|
|
\widetilde{\vect N}_{mn}^{(j)} & = & \frac{n(n+1)}{kr}\sqrt{\frac{2n+1}{4\pi}\frac{\left(n-m\right)!}{\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi}z_{n}^{j}\left(kr\right)\hat{\vect r}\\
|
|
& & +\left[\tilde{\tau}_{mn}\left(\cos\theta\right)\hat{\vect{\theta}}+i\tilde{\pi}_{mn}\left(\cos\theta\right)\hat{\vect{\phi}}\right]e^{im\phi}z_{n}^{j}\left(kr\right)\\
|
|
\widetilde{\vect M}_{mn}^{(j)} & = & \left[i\tilde{\pi}_{mn}\left(\cos\theta\right)\hat{\vect{\theta}}-\tilde{\tau}_{mn}\left(\cos\theta\right)\hat{\vect{\phi}}\right]e^{im\phi}z_{n}^{j}\left(kr\right)
|
|
\end{eqnarray*}
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Subsection
|
|
Kristensson
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Definition [K](2.4.6);
|
|
\begin_inset Formula $\vect u_{\tau lm},\vect v_{\tau lm},\vect w_{\tau lm}$
|
|
\end_inset
|
|
|
|
are the waves with
|
|
\begin_inset Formula $j=3,1,4$
|
|
\end_inset
|
|
|
|
respectively, i.e.
|
|
outgoing, regular and incoming waves.
|
|
The first index distinguishes between the electric (
|
|
\begin_inset Formula $\tau=2$
|
|
\end_inset
|
|
|
|
) and magnetic (
|
|
\begin_inset Formula $\tau=1$
|
|
\end_inset
|
|
|
|
).
|
|
Kristensson uses a multiindex
|
|
\begin_inset Formula $n\equiv(\tau,l,m)$
|
|
\end_inset
|
|
|
|
to simlify the notation.
|
|
\begin_inset Formula
|
|
\begin{eqnarray*}
|
|
\left(\vect{u/v/w}\right)_{2lm} & = & \frac{1}{kr}\frac{\ud\left(kr\, z_{l}^{(j)}\left(kr\right)\right)}{\ud\, kr}\vect A_{2lm}\left(\hat{\vect r}\right)+\sqrt{l\left(l+1\right)}\frac{z_{l}^{(j)}(kr)}{kr}\vect A_{3lm}\left(\hat{\vect r}\right)\\
|
|
\left(\vect{u/v/w}\right)_{1lm} & = & z_{l}^{(j)}\left(kr\right)\vect A_{1lm}\left(\hat{\vect r}\right)
|
|
\end{eqnarray*}
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Subsection
|
|
Relation between Kristensson and Taylor
|
|
\begin_inset CommandInset label
|
|
LatexCommand label
|
|
name "sub:Kristensson-v-Taylor"
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Kristensson's and Taylor's VSWFs seem to differ only by an
|
|
\begin_inset Formula $l$
|
|
\end_inset
|
|
|
|
-dependent normalization factor, and notation of course (n.b.
|
|
the inverse index order)
|
|
\begin_inset Formula
|
|
\begin{eqnarray*}
|
|
\left(\vect{u/v/w}\right)_{2lm} & = & \frac{\widetilde{\vect N}_{ml}^{(3/1/4)}}{\sqrt{l\left(l+1\right)}}\\
|
|
\left(\vect{u/v/w}\right)_{1lm} & = & \frac{\widetilde{\vect M}_{ml}^{(3/1/4)}}{\sqrt{l\left(l+1\right)}}
|
|
\end{eqnarray*}
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Section
|
|
Plane wave expansion
|
|
\end_layout
|
|
|
|
\begin_layout Subsection
|
|
Taylor
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
\begin_inset Formula $x$
|
|
\end_inset
|
|
|
|
-polarised,
|
|
\begin_inset Formula $z$
|
|
\end_inset
|
|
|
|
-propagating plane wave,
|
|
\begin_inset Formula $\vect E=E_{0}\hat{\vect x}e^{i\vect k\cdot\hat{\vect z}}$
|
|
\end_inset
|
|
|
|
(CHECK):
|
|
\begin_inset Formula
|
|
\begin{eqnarray*}
|
|
\vect E & = & -i\left(p_{mn}\widetilde{\vect N}_{mn}^{(1)}+q_{mn}\widetilde{\vect M}_{mn}^{(1)}\right)\\
|
|
p_{mn} & = & E_{0}\frac{4\pi i^{n}}{n(n+1)}\tilde{\tau}_{mn}(1)\\
|
|
q_{mn} & = & E_{0}\frac{4\pi i^{n}}{n(n+1)}\tilde{\pi}_{mn}(1)
|
|
\end{eqnarray*}
|
|
|
|
\end_inset
|
|
|
|
while it can be shown that
|
|
\begin_inset Formula
|
|
\begin{eqnarray*}
|
|
\tilde{\pi}_{mn}(1) & = & -\frac{1}{2}\sqrt{\frac{\left(2n+1\right)\left(n\left(n+1\right)\right)}{4\pi}}\left(\delta_{m,1}+\delta_{m,-1}\right)\\
|
|
\tilde{\tau}_{mn}(1) & = & -\frac{1}{2}\sqrt{\frac{\left(2n+1\right)\left(n\left(n+1\right)\right)}{4\pi}}\left(\delta_{m,1}-\delta_{m,-1}\right)
|
|
\end{eqnarray*}
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Subsection
|
|
Kristensson
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
\begin_inset Formula $x$
|
|
\end_inset
|
|
|
|
-polarised,
|
|
\begin_inset Formula $z$
|
|
\end_inset
|
|
|
|
-propagating plane wave,
|
|
\begin_inset Formula $\vect E=E_{0}\hat{\vect x}e^{i\vect k\cdot\hat{\vect z}}$
|
|
\end_inset
|
|
|
|
(CHECK, ):
|
|
\begin_inset Formula
|
|
\[
|
|
\vect E=\sum_{n}a_{n}\vect v_{n}
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\begin_inset Formula
|
|
\begin{eqnarray*}
|
|
a_{1lm} & = & E_{0}i^{l+1}\sqrt{\left(2l+1\right)\pi}\left(\delta_{m,1}+\delta_{m,-1}\right)\\
|
|
a_{2lm} & = & E_{0}i^{l+1}\sqrt{\left(2l+1\right)\pi}\left(\delta_{m,1}+\delta_{m,-1}\right)
|
|
\end{eqnarray*}
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Section
|
|
Radiated energy
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
In this section I summarize the formulae for power
|
|
\begin_inset Formula $P$
|
|
\end_inset
|
|
|
|
radiated from the system.
|
|
For an absorbing scatterer, this should be negative (n.b.
|
|
sign conventions can be sometimes confusing).
|
|
If the system is excited by a plane wave with intensity
|
|
\begin_inset Formula $E_{0}$
|
|
\end_inset
|
|
|
|
, this can be used to calculate the absorption cross section,
|
|
\begin_inset Formula
|
|
\[
|
|
\sigma_{\mathrm{abs}}=-\frac{P}{\varepsilon\varepsilon_{0}\left|E_{0}\right|^{2}}.
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Subsection
|
|
Kristensson
|
|
\begin_inset CommandInset label
|
|
LatexCommand label
|
|
name "sub:Radiated enenergy-Kristensson"
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Sect.
|
|
[K]2.6.2; here this form of expansion is assumed:
|
|
\begin_inset Formula
|
|
\begin{equation}
|
|
\vect E\left(\vect r,\omega\right)=k\sqrt{\eta_{0}\eta}\sum_{n}\left(a_{n}\vect v_{n}\left(k\vect r\right)+f_{n}\vect u_{n}\left(k\vect r\right)\right).\label{eq:power-Kristensson-E}
|
|
\end{equation}
|
|
|
|
\end_inset
|
|
|
|
Here
|
|
\begin_inset Formula $\eta_{0}=\sqrt{\mu_{0}/\varepsilon_{0}}$
|
|
\end_inset
|
|
|
|
is the wave impedance of free space and
|
|
\begin_inset Formula $\eta=\sqrt{\mu/\varepsilon}$
|
|
\end_inset
|
|
|
|
is the relative wave impedance of the medium.
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
The radiated power is then (2.28):
|
|
\begin_inset Formula
|
|
\[
|
|
P=\frac{1}{2}\sum_{n}\left(\left|f_{n}\right|^{2}+\Re\left(f_{n}a_{n}^{*}\right)\right)
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Subsection
|
|
Taylor
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Here I derive the radiated power in Taylor's convention by applying the
|
|
relations from subsection
|
|
\begin_inset CommandInset ref
|
|
LatexCommand ref
|
|
reference "sub:Kristensson-v-Taylor"
|
|
|
|
\end_inset
|
|
|
|
to the Kristensson's formulae (sect.
|
|
|
|
\begin_inset CommandInset ref
|
|
LatexCommand ref
|
|
reference "sub:Radiated enenergy-Kristensson"
|
|
|
|
\end_inset
|
|
|
|
).
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
Assume the external field decomposed as (here I use tildes even for the
|
|
expansion coefficients in order to avoid confusion with the
|
|
\begin_inset Formula $a_{n}$
|
|
\end_inset
|
|
|
|
in
|
|
\begin_inset CommandInset ref
|
|
LatexCommand eqref
|
|
reference "eq:power-Kristensson-E"
|
|
|
|
\end_inset
|
|
|
|
)
|
|
\begin_inset Formula
|
|
\[
|
|
\vect E\left(\vect r,\omega\right)=\sum_{mn}\left[-i\left(\tilde{p}_{mn}\vect{\widetilde{N}}_{mn}^{(1)}+\tilde{q}_{mn}\widetilde{\vect M}_{mn}^{(1)}\right)+i\left(\tilde{a}_{mn}\widetilde{\vect N}_{mn}^{(3)}+\tilde{b}_{mn}\widetilde{\vect M}_{mn}^{(3)}\right)\right]
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
(there is minus between the regular and outgoing part!).
|
|
The coefficients are related to those from
|
|
\begin_inset CommandInset ref
|
|
LatexCommand eqref
|
|
reference "eq:power-Kristensson-E"
|
|
|
|
\end_inset
|
|
|
|
as
|
|
\begin_inset Formula
|
|
\[
|
|
\tilde{p}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{-i\sqrt{n(n+1)}}a_{2nm},\quad\tilde{q}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{-i\sqrt{n(n+1)}}a_{1nm},
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\begin_inset Formula
|
|
\[
|
|
\tilde{a}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{i\sqrt{n(n+1)}}f_{2nm},\quad\tilde{b}_{mn}=\frac{k\sqrt{\eta_{0}\eta}}{i\sqrt{n(n+1)}}f_{1nm}.
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
The radiated power is then
|
|
\begin_inset Formula
|
|
\[
|
|
P=\frac{1}{2}\sum_{m,n}\frac{n\left(n+1\right)}{k^{2}\eta_{0}}\left(\left|a_{mn}\right|^{2}+\left|b_{mn}\right|^{2}-\Re\left(a_{mn}p_{mn}^{*}\right)-\Re\left(b_{mn}q_{mn}^{*}\right)\right).
|
|
\]
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Section
|
|
Limit solutions
|
|
\end_layout
|
|
|
|
\begin_layout Subsection
|
|
Far-field asymptotic solution
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
TODO start from
|
|
\begin_inset CommandInset citation
|
|
LatexCommand cite
|
|
after "(A7)"
|
|
key "pustovit_plasmon-mediated_2010"
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\begin_layout Subsection
|
|
Near field limit
|
|
\end_layout
|
|
|
|
\begin_layout Chapter
|
|
Mie Theory
|
|
\end_layout
|
|
|
|
\begin_layout Section
|
|
Full version
|
|
\end_layout
|
|
|
|
\begin_layout Section
|
|
Long wave approximation
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
TODO start from
|
|
\begin_inset CommandInset citation
|
|
LatexCommand cite
|
|
after "(A11)"
|
|
key "pustovit_plasmon-mediated_2010"
|
|
|
|
\end_inset
|
|
|
|
and around.
|
|
\end_layout
|
|
|
|
\begin_layout Chapter
|
|
Green's functions
|
|
\end_layout
|
|
|
|
\begin_layout Section
|
|
xyz pure free-space dipole waves in terms of SVWF
|
|
\end_layout
|
|
|
|
\begin_layout Section
|
|
Mie decomposition of Green's function for single nanoparticle
|
|
\end_layout
|
|
|
|
\begin_layout Chapter
|
|
Translation of spherical waves: getting insane
|
|
\end_layout
|
|
|
|
\begin_layout Chapter
|
|
Multiple scattering: nice linear algebra born from all the mess
|
|
\end_layout
|
|
|
|
\begin_layout Standard
|
|
\begin_inset CommandInset bibtex
|
|
LatexCommand bibtex
|
|
bibfiles "dipdip"
|
|
options "plain"
|
|
|
|
\end_inset
|
|
|
|
|
|
\end_layout
|
|
|
|
\end_body
|
|
\end_document
|