qpms/notes/cylinderT.lyx

421 lines
10 KiB
Plaintext
Raw Permalink Normal View History

#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 584
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand input
filename "makrot.lyx"
literal "false"
\end_inset
\end_layout
\begin_layout Title
T-matrix of an axially symmetric particle
\end_layout
\begin_layout Standard
So we have
\begin_inset CommandInset citation
LatexCommand cite
after "(9.12)"
key "kristensson_scattering_2016"
literal "false"
\end_inset
:
\begin_inset Formula
\begin{align*}
R_{nn'} & =ik^{2}\iint_{S_{s}}\left(\frac{\eta}{\eta_{1}}\wfkcreg_{n}\left(k\vect r\right)\times\wfkcreg_{\overline{n'}}\left(k_{1}\vect r\right)+\wfkcreg_{\overline{n}}\left(k\vect r\right)\times\wfkcreg_{n'}\left(k_{1}\vect r\right)\right)\cdot\uvec{\nu}\,\ud S,\\
Q_{nn'} & =ik^{2}\iint_{S_{s}}\left(\frac{\eta}{\eta_{1}}\wfkcout_{n}\left(k\vect r\right)\times\wfkcreg_{\overline{n'}}\left(k_{1}\vect r\right)+\wfkcout_{\overline{n}}\left(k\vect r\right)\times\wfkcreg_{n'}\left(k_{1}\vect r\right)\right)\cdot\uvec{\nu}\,\ud S,
\end{align*}
\end_inset
where
\begin_inset Formula $S_{s}$
\end_inset
is the scatterer surface,
\begin_inset Formula $\uvec{\nu}$
\end_inset
is the outwards pointing unit normal to it, and the subscript
\begin_inset Formula $_{1}$
\end_inset
refers to the particle inside; then
\begin_inset Formula
\begin{equation}
T_{nn'}=-\sum_{n''}R_{nn''}Q_{n''n}^{-1}.\label{eq:T matrix from R and Q}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Let us consider the case with full rotational symmetry around the
\begin_inset Formula $z$
\end_inset
axis and parametrise the integral in terms of polar angle
\begin_inset Formula $\theta$
\end_inset
.
Let
\begin_inset Formula $\beta$
\end_inset
be the angle between the surface normal
\begin_inset Formula $\uvec{\nu}$
\end_inset
and the coordinate radial direction
\begin_inset Formula $\uvec r$
\end_inset
.
The infinitesimal surface area element is then
\begin_inset Formula
\[
\ud S\left(\theta\right)=\frac{\left(r\left(\theta\right)\right)^{2}\sin\theta}{\cos\beta\left(\theta\right)}\ud\theta\,\ud\phi
\]
\end_inset
and the surface normal in local coordinates
\begin_inset Formula
\[
\uvec{\nu}\left(\theta\right)=\uvec r\cos\beta\left(\theta\right)+\uvec{\theta}\sin\beta\left(\theta\right),
\]
\end_inset
which also sets a convention for the sign of
\begin_inset Formula $\beta$
\end_inset
.
\end_layout
\begin_layout Standard
For fully axially symmetric particles the integrals vanish for
\begin_inset Formula $m\ne-m'$
\end_inset
due to the
\begin_inset Formula $e^{i\left(m+m'\right)}$
\end_inset
asimuthal factor in the integrand.
One then has
\begin_inset Formula
\begin{equation}
T_{nn'}=-\sum_{n''}R'_{nn''}Q'_{n''n}^{-1}\label{eq:T-matrix from reduced R and Q}
\end{equation}
\end_inset
where
\begin_inset Formula
\begin{align*}
R'_{nn'} & =\int_{0}^{\pi}\left(\frac{\eta}{\eta_{1}}\wfkcreg_{n}\left(k\vect r\right)\times\wfkcreg_{\overline{n'}}\left(k_{1}\vect r\right)+\wfkcreg_{\overline{n}}\left(k\vect r\right)\times\wfkcreg_{n'}\left(k_{1}\vect r\right)\right)\cdot\left(\uvec r\cos\beta\left(\theta\right)+\uvec{\theta}\sin\beta\left(\theta\right)\right)\frac{\left(r\left(\theta\right)\right)^{2}\sin\theta}{\cos\beta\left(\theta\right)}\ud\theta,\\
Q'_{nn'} & =\int_{0}^{\pi}\left(\frac{\eta}{\eta_{1}}\wfkcreg_{n}\left(k\vect r\right)\times\wfkcreg_{\overline{n'}}\left(k_{1}\vect r\right)+\wfkcreg_{\overline{n}}\left(k\vect r\right)\times\wfkcreg_{n'}\left(k_{1}\vect r\right)\right)\cdot\left(\uvec r\cos\beta\left(\theta\right)+\uvec{\theta}\sin\beta\left(\theta\right)\right)\frac{\left(r\left(\theta\right)\right)^{2}\sin\theta}{\cos\beta\left(\theta\right)}\ud\theta
\end{align*}
\end_inset
where
\begin_inset Formula $\vect r=\vect r\left(\theta\right)=\left(r\left(\theta\right),\theta,0\right)$
\end_inset
.
Matrices
\begin_inset Formula $Q',R'$
\end_inset
differ from the original
\begin_inset Formula $R,Q$
\end_inset
matrices in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:T matrix from R and Q"
plural "false"
caps "false"
noprefix "false"
\end_inset
by a factor of
\begin_inset Formula $2\pi ik^{2}$
\end_inset
, but this cancels out in the matrix product.
\end_layout
\begin_layout Standard
\begin_inset Float figure
placement document
alignment document
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename cylinder.png
lyxscale 30
width 50text%
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption Standard
\begin_layout Plain Layout
Parametrisation of cylindrical particle surface.
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Standard
For cylindrical particle of radius
\begin_inset Formula $R$
\end_inset
and height
\begin_inset Formula $h$
\end_inset
, we can divide the parametrisation into three intervals
\begin_inset Formula $\left(0,\theta_{1}\right),\left(\theta_{1},\theta_{2}\right),\left(\theta_{2},\pi\right)$
\end_inset
where
\begin_inset Formula $\theta_{1}=\tan^{-1}\left(2R/h\right),\theta_{2}=\pi-\tan^{-1}\left(2R/h\right)$
\end_inset
:
\end_layout
\begin_layout Enumerate
In the first section,
\begin_inset Formula $0<\theta<\theta_{1}$
\end_inset
,
\begin_inset Formula
\begin{align*}
r & =\frac{h}{2\cos\theta},\\
\beta & =-\theta.
\end{align*}
\end_inset
\end_layout
\begin_layout Enumerate
In the second section,
\begin_inset Formula $\theta_{1}<\theta<\theta_{2}$
\end_inset
,
\begin_inset Formula
\begin{align*}
r & =\frac{R}{\cos\left(\theta-\pi/2\right)}=\frac{R}{\sin\theta},\\
\beta & =-\theta+\pi/2.
\end{align*}
\end_inset
\end_layout
\begin_layout Enumerate
In the third section,
\begin_inset Formula $\theta_{2}<\theta<\pi$
\end_inset
,
\begin_inset Formula
\begin{align*}
r & =\frac{h}{2\cos\left(\theta-\pi\right)}=-\frac{h}{2\cos\theta},\\
\beta & =-\theta+\pi.
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
Let's write VSWFs in terms of the power-normalised
\begin_inset Formula $p,\pi,\tau$
\end_inset
funs:
\begin_inset Formula
\begin{align*}
\vsh_{1lm} & =\left(\uvec{\theta}\pi_{lm}-\uvec{\phi}\tau_{lm}\right)e^{im\phi}\\
\vsh_{2lm} & =\left(\uvec{\theta}\tau_{lm}+\uvec{\phi}\pi_{lm}\right)e^{im\phi}\\
\vsh_{3lm} & =\sqrt{l\left(l+1\right)}p_{lm}e^{im\theta}
\end{align*}
\end_inset
\begin_inset Formula
\begin{align*}
\vect y_{\kappa1lm} & =\underbrace{h_{l}^{\kappa}e^{im\phi}}_{c_{\kappa lm}^{1}}\left(\uvec{\theta}\pi_{lm}-\uvec{\phi}\tau_{lm}\right)\\
\vect y_{\kappa2lm} & =\frac{1}{kr}e^{im\phi}\left(\frac{\ud\left(krh_{l}^{\kappa}\right)}{\ud\left(kr\right)}\left(\uvec{\theta}\tau_{lm}+\uvec{\phi}\pi_{lm}\right)+h_{l}^{\kappa}l\left(l+1\right)\uvec rp_{lm}\right)\\
& =c_{\kappa lm}^{2}\left(\uvec{\theta}\tau_{lm}+\uvec{\phi}\pi_{lm}\right)+c_{\kappa lm}^{3}\uvec rp_{lm}
\end{align*}
\end_inset
The triple products than are (reminder:
\begin_inset Formula $\uvec{\nu}\left(\theta\right)=\uvec r\cos\beta\left(\theta\right)+\uvec{\theta}\sin\beta\left(\theta\right))$
\end_inset
:
\begin_inset Formula
\begin{align*}
\left(\vect y_{\kappa1lm}\times\vect v_{1l'm'}\right)\cdot\uvec{\nu} & =\cos\beta c_{\kappa lm}^{1}c_{\mathrm{R}l'm'}^{1}\left(-\pi_{lm}\tau_{l'm'}+\tau_{lm}\pi_{l'm'}\right)\\
\left(\vect y_{\kappa1lm}\times\vect v_{2l'm'}\right)\cdot\uvec{\nu} & =\cos\beta c_{\kappa lm}^{1}c_{\mathrm{R}l'm'}^{2}\left(\pi_{lm}\pi_{l'm'}+\tau_{lm}\tau_{l'm'}\right)\\
& +\sin\beta c_{\kappa lm}^{1}c_{\mathrm{R}l'm'}^{3}\left(-\tau_{lm}p_{l'm'}\right)\\
\left(\vect y_{\kappa2lm}\times\vect v_{1l'm'}\right)\cdot\uvec{\nu} & =\cos\beta c_{\kappa lm}^{2}c_{\mathrm{R}l'm'}^{1}\left(-\pi_{lm}\pi_{l'm'}-\tau_{lm}\tau_{l'm'}\right)\\
& +\sin\beta c_{\kappa lm}^{3}c_{\mathrm{R}l'm'}^{1}\left(p_{lm}\tau_{l'm'}\right)\\
\left(\vect y_{\kappa2lm}\times\vect v_{2l'm'}\right)\cdot\uvec{\nu} & =\cos\beta c_{\kappa lm}^{2}c_{\mathrm{R}l'm'}^{2}\left(\tau_{lm}\pi_{l'm'}-\pi_{lm}\tau_{l'm'}\right)\\
& -\sin\beta c_{\kappa lm}^{3}c_{\mathrm{R}l'm'}^{2}p_{lm}\pi_{l'm'}\\
& +\sin\beta c_{\kappa lm}^{2}c_{\mathrm{R}l'm'}^{3}\pi_{lm}p_{l'm'}
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset bibtex
LatexCommand bibtex
btprint "btPrintCited"
bibfiles "Electrodynamics"
options "plain"
encoding "default"
\end_inset
\end_layout
\end_body
\end_document