qpms/worknotes.lyx

998 lines
16 KiB
Plaintext
Raw Normal View History

#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass revtex4
\options pra,superscriptaddress,twocolumn,notitlepage
\use_default_options false
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts true
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format pdf4
\output_sync 0
\bibtex_command bibtex
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize a4paper
\use_geometry false
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Standard
\lang finnish
\begin_inset FormulaMacro
\newcommand{\ket}[1]{\left|#1\right\rangle }
\end_inset
\begin_inset FormulaMacro
\newcommand{\bra}[1]{\left\langle #1\right|}
\end_inset
\lang english
\begin_inset FormulaMacro
\newcommand{\vect}[1]{\mathbf{\boldsymbol{#1}}}
{\boldsymbol{\mathbf{#1}}}
\end_inset
\end_layout
\begin_layout Title
Technical notes on quantum electromagnetic multiple scattering
\end_layout
\begin_layout Author
Marek Nečada
\end_layout
\begin_layout Affiliation
COMP Centre of Excellence, Department of Applied Physics, Aalto University,
P.O.
Box 15100, Fi-00076 Aalto, Finland
\end_layout
\begin_layout Date
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
today
\end_layout
\end_inset
\end_layout
\begin_layout Abstract
...
\end_layout
\begin_layout Section
Theory of quantum electromagnetic multiple scattering
\end_layout
\begin_layout Subsection
Incoherent pumping
\end_layout
\begin_layout Standard
Cf.
Wubs
\begin_inset CommandInset citation
LatexCommand cite
key "wubs_multiple-scattering_2004"
\end_inset
, Delga
\begin_inset CommandInset citation
LatexCommand cite
key "delga_quantum_2014,delga_theory_2014"
\end_inset
.
\end_layout
\begin_layout Subsection
General initial states
\end_layout
\begin_layout Standard
Look at
\begin_inset CommandInset citation
LatexCommand cite
key "landau_computational_2015"
\end_inset
for an inspiration for solving the LS equation with an arbitrary initial
state.
\end_layout
\begin_layout Section
Computing classical Green's functions
\end_layout
\begin_layout Subsection
Boundary element method
\end_layout
\begin_layout Subsection
T-Matrix method
\end_layout
\begin_layout Subsection
T-Matrix resummation (multiple scatterers)
\end_layout
\begin_layout Subsection
BEM→TM
\end_layout
\begin_layout Standard
Cf.
SCUFF-TMATRIX (
\begin_inset CommandInset ref
LatexCommand ref
reference "sub:SCUFF-TMATRIX"
\end_inset
)
\end_layout
\begin_layout Section
Available software
\end_layout
\begin_layout Itemize
TODO which of them can calculate the VSWF translation coefficients?
\end_layout
\begin_layout Subsection
SCUFF-EM
\begin_inset CommandInset citation
LatexCommand cite
key "reid_scuff-em_2015"
\end_inset
\end_layout
\begin_layout Subsubsection
\family typewriter
SCUFF-TMATRIX
\family default
\begin_inset CommandInset label
LatexCommand label
name "sub:SCUFF-TMATRIX"
\end_inset
\end_layout
\begin_layout Subsubsection
\family typewriter
SCUFF-SCATTER
\family default
\begin_inset CommandInset label
LatexCommand label
name "sub:SCUFF-SCATTER"
\end_inset
\end_layout
\begin_layout Subsubsection
Caveats
\end_layout
\begin_layout Description
Units.
\family typewriter
SCUFF-SCATTER
\family default
's Angular frequencies specified using the
\family typewriter
--Omega
\family default
or
\family typewriter
--OmegaFile
\family default
arguments are interpreted in units of
\begin_inset Formula $c/1\,\mathrm{μm}=3\cdot10^{14}\,\mathrm{rad/s}$
\end_inset
\begin_inset Foot
status open
\begin_layout Plain Layout
\family typewriter
\begin_inset CommandInset href
LatexCommand href
name "http://homerreid.dyndns.org/scuff-EM/scuff-scatter/scuffScatterExamples.shtml"
target "http://homerreid.dyndns.org/scuff-EM/scuff-scatter/scuffScatterExamples.shtml"
\end_inset
\end_layout
\end_inset
.
\emph on
TODO what are the output units?
\end_layout
\begin_layout Subsection
MSTM
\begin_inset CommandInset citation
LatexCommand cite
key "mackowski_mstm_2013"
\end_inset
\end_layout
\begin_layout Itemize
The incident field is a gaussian beam or a plane wave in the vanilla code
(no multipole radiation as input!).
\end_layout
\begin_layout Itemize
The bulk of the useful code is in the
\family typewriter
mstm-modules-v3.0.f90
\family default
file.
\end_layout
\begin_layout Itemize
For solving the interaction equations
\begin_inset CommandInset citation
LatexCommand cite
after "(14)"
key "mackowski_mstm_2013"
\end_inset
, the BCGM (biconjugate gradient method) is used.
(According to Wikipedia, this method is numerically unstable but has a
stabilized version (stabilized BCGM).)
\end_layout
\begin_layout Itemize
According to the manual
\begin_inset CommandInset citation
LatexCommand cite
after "2.3"
key "mackowski_mstm_2013"
\end_inset
, they use some method (rotational-axial translation decomposition of the
translation operation), which
\begin_inset Quotes eld
\end_inset
reduces the operation from an
\begin_inset Formula $L_{S}^{4}$
\end_inset
process to
\begin_inset Formula $L_{S}^{3}$
\end_inset
process where
\begin_inset Formula $L_{S}$
\end_inset
is the truncation order of the expansion
\begin_inset Quotes erd
\end_inset
(more details can probably be found at
\begin_inset CommandInset citation
LatexCommand cite
after "around (68)"
key "mackowski_calculation_1996"
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Itemize
\emph on
Not sure if this holds also for nonspherical particles, I should either
read carefully
\emph default
\begin_inset CommandInset citation
LatexCommand cite
key "mackowski_calculation_1996"
\end_inset
\emph on
or look into
\begin_inset CommandInset citation
LatexCommand cite
key "mishchenko_electromagnetic_2003"
\end_inset
which is also cited in the manual.
\end_layout
\end_deeper
\begin_layout Itemize
By default spheres, it is possible to add own T-Matrix coefficients instead.
\end_layout
\begin_deeper
\begin_layout Itemize
\emph on
Is it then possible to insert a T-Matrix of an arbitrary shape, or is it
somehow limited to
\begin_inset Quotes eld
\end_inset
spherical-like
\begin_inset Quotes erd
\end_inset
particles?
\end_layout
\end_deeper
\begin_layout Itemize
Why the heck are the T-matrix options listed in the
\begin_inset Quotes eld
\end_inset
Options for random orientation calculations
\begin_inset Quotes erd
\end_inset
? Well, it seems that for fixed orientation, it is not possible to specify
the T-matrix, cf.
the description of
\family typewriter
fixed_or_random_orientation
\family default
option in
\begin_inset CommandInset citation
LatexCommand cite
after "3.2.3"
key "mackowski_mstm_2013"
\end_inset
.
\end_layout
\begin_layout Subsubsection
Interesting subroutines
\end_layout
\begin_layout Itemize
\family typewriter
rottranfarfield
\family default
: it states
\begin_inset Quotes eld
\end_inset
far field formula for outgoing vswf translation
\begin_inset Quotes erd
\end_inset
.
What is that and how does it differ from whatever else (near field?) formula?
\end_layout
\begin_layout Subsection
py_gmm
\begin_inset CommandInset citation
LatexCommand cite
key "pellegrini_py_gmm_2015"
\end_inset
\end_layout
\begin_layout Itemize
Fortran code, already (partially) pythonized using
\family typewriter
f2py
\family default
by the authors(?); under GNU GPLv3.
This could save my day.
\end_layout
\begin_layout Itemize
Lots of unnecessary code duplication (see e.g.
\family typewriter
coeff_sp2
\family default
and
\family typewriter
coeff_sp2_dip
\family default
subroutines).
\end_layout
\begin_layout Itemize
Has comments!!! (Sometimes they are slightly inaccurate due to the copy-pasting,
but it is still one of the most readable FORTRAN codes I have seen.)
\end_layout
\begin_layout Itemize
The subroutines seem not to be bloated with dependencies on static/global
variables, so they should be quite easily reusable.
\end_layout
\begin_layout Itemize
The FORTRAN code was apparently used in
\begin_inset CommandInset citation
LatexCommand cite
key "pellegrini_interacting_2007"
\end_inset
.
Uses the multiple-scattering formalism described in
\begin_inset CommandInset citation
LatexCommand cite
key "xu_efficient_1998"
\end_inset
.
\end_layout
\begin_layout Subsubsection
Interesting subroutines
\end_layout
\begin_layout Standard
Mie scattering:
\end_layout
\begin_layout Itemize
\family typewriter
coeff_sp2
\family default
: calculation of the Mie scattering coefficients (
\begin_inset Formula $\overline{a}_{n}^{l},\overline{b}_{n}^{l}$
\end_inset
as in
\begin_inset CommandInset citation
LatexCommand cite
after "(1), (2), \\ldots"
key "pellegrini_py_gmm_2015"
\end_inset
), for a set of spheres (therefore all the parameters have +1 dimension).
\end_layout
\begin_deeper
\begin_layout Itemize
What does the input parameter
\family typewriter
v_req
\family default
(
\emph on
vettore raggi equivalenti
\emph default
) mean?
\end_layout
\begin_layout Itemize
How do I put in the environment permittivity?
\end_layout
\begin_layout Itemize
\family typewriter
m_epseq
\family default
are real and imaginary parts of the permittivity (which are then transformed
into complex
\family typewriter
v_epsc
\family default
)
\end_layout
\begin_layout Itemize
\family typewriter
ref_index
\family default
is the environment refractive index (called
\family typewriter
n_matrix
\family default
in the example ipython notebook)
\end_layout
\begin_layout Itemize
\family typewriter
v_req
\family default
are the sphere radii?
\end_layout
\begin_layout Itemize
\family typewriter
nstop
\family default
is the maximum order of the
\begin_inset Formula $n$
\end_inset
-expansion
\end_layout
\begin_layout Itemize
\family typewriter
neq
\family default
is ns, number of spheres for which the calculation is performed apparently,
it is connected to some
\begin_inset Quotes eld
\end_inset
dirty hack to interface fortran and python properly
\begin_inset Quotes erd
\end_inset
(cf.
\family typewriter
gmm_f2py_module.f90
\family default
)
\end_layout
\end_deeper
\begin_layout Section
Code integration
\end_layout
\begin_layout Section
Testing and reproduction of foreign results
\end_layout
\begin_layout Subsection
Delga PRL
\begin_inset CommandInset citation
LatexCommand cite
key "delga_quantum_2014"
\end_inset
\end_layout
\begin_layout Subsubsection
Parameters
\end_layout
\begin_layout Itemize
Surrounding lossless dielectric
\series bold
medium
\series default
with permittivity
\begin_inset Formula $\epsilon_{d}=2.13$
\end_inset
.
\end_layout
\begin_layout Itemize
\series bold
QEs:
\series default
dipole moment
\begin_inset Formula $\mu=0.19\, e\cdot\mathrm{nm}=9.12\,\mathrm{D}$
\end_inset
, count
\begin_inset Formula $N\in\left\{ 1,50,100,200\right\} $
\end_inset
, radial orientation,
\begin_inset Formula $h=1\,\mathrm{nm}$
\end_inset
above the sphere (except for Fig.
5 where variable), natural frequency
\begin_inset Formula $\Omega_{n}=\omega_{0}-i\gamma_{\mathrm{QE}}/2,$
\end_inset
\begin_inset Formula $\omega_{0}=$
\end_inset
varies,
\begin_inset Formula $\gamma_{\mathrm{QE}}=15\,\mathrm{meV}$
\end_inset
.
\end_layout
\begin_layout Itemize
\series bold
Sphere:
\end_layout
\begin_deeper
\begin_layout Itemize
radius
\begin_inset Formula $a=7\,\mathrm{nm}$
\end_inset
,
\end_layout
\begin_layout Itemize
Drude model
\begin_inset Formula $\epsilon_{m}(\omega)=\epsilon_{\infty}-\frac{\omega_{p}^{2}}{\omega\left(\omega+i\gamma_{p}\right)}$
\end_inset
\end_layout
\begin_deeper
\begin_layout Itemize
Drude parameters
\begin_inset Formula $\omega_{p}=9\,\mathrm{eV}$
\end_inset
,
\begin_inset Formula $\epsilon_{\infty}=4.6$
\end_inset
,
\begin_inset Formula $\gamma_{p}=0.1\,\mathrm{eV}$
\end_inset
\end_layout
\end_deeper
\begin_layout Itemize
background permittivity
\begin_inset Formula $\epsilon_{d}(\omega)=2.13$
\end_inset
\end_layout
\begin_layout Itemize
(approximate?; not really a parameter) LSP resonances
\begin_inset Formula $\omega_{l}=\omega_{p}/\sqrt{\epsilon_{\infty}+\left(1+1/l\right)\epsilon_{d}}$
\end_inset
; particularly,
\begin_inset Formula $\omega_{1}\approx3.0236\,\mathrm{eV}$
\end_inset
,
\begin_inset Formula $\omega_{2}\approx3.2236\,\mathrm{eV}$
\end_inset
,
\begin_inset Formula $\omega_{3}\approx3.30\,\mathrm{eV}$
\end_inset
,
\begin_inset Formula $\omega_{4}\approx3.34\,\mathrm{eV}$
\end_inset
,
\begin_inset Formula $\omega_{5}\approx3.364\,\mathrm{eV}$
\end_inset
\begin_inset Formula $\omega_{\infty}\approx3.4692\,\mathrm{eV}$
\end_inset
\end_layout
\end_deeper
\begin_layout Itemize
\series bold
Detector:
\series default
\end_layout
\begin_deeper
\begin_layout Itemize
Far field:
\begin_inset Formula $1\,\mathrm{\mu m}$
\end_inset
away from the center of the nanoparticle along the
\begin_inset Formula $y$
\end_inset
axis (Fig.
3).
\end_layout
\begin_layout Itemize
Near field: position not specified in the paper; but in Fig.
4(b) there are
\begin_inset Quotes eld
\end_inset
polarization spectra
\begin_inset Quotes erd
\end_inset
instead of
\begin_inset Quotes eld
\end_inset
light spectra
\begin_inset Quotes erd
\end_inset
(eq.
4) in Fig.
4(a).
Does this mean that they are evaluated somewhere in/on the sphere? Or in
the particle? The latter is likely, as it is given by
\begin_inset Formula $P_{n}\left(\omega\right)=\left\langle \sigma_{n}^{+}\left(-\omega\right)\sigma_{n}^{-}(\omega)\right\rangle $
\end_inset
(cf.
the column below Fig.
3).
\end_layout
\end_deeper
\begin_layout Subsubsection
Testing
\end_layout
\begin_layout Standard
In my
\begin_inset Quotes eld
\end_inset
old
\begin_inset Quotes erd
\end_inset
code, there no splitting observable around
\begin_inset Formula $\omega\approx\omega_{0}\approx\omega_{\infty}\approx3.46\,\mathrm{eV}$
\end_inset
.
This is perhaps because the couplings to the higher multipoles is miscalculated
(too small).
No splitting around the NP dipole (
\begin_inset Formula $\approx3,02\,\mathrm{eV}$
\end_inset
) should be OK for single QE in far field (cf.
Fig.
3).
And there are yet the
\begin_inset Quotes eld
\end_inset
switched axes
\begin_inset Quotes erd
\end_inset
...
\end_layout
\begin_layout Standard
If I set the dipole reflection coefficients RH[1], RV[1] to zero, and multiply
the the quadrupole reflection coefficients RH[2], RV[2] by
\begin_inset Formula $10^{6}$
\end_inset
, the peak at
\begin_inset Formula $3.0\,\mathrm{eV}$
\end_inset
dissapears and a tiny(!) peak appears around the (expected) position of
\begin_inset Formula $3.0\,\mathrm{eV}$
\end_inset
.
Have I fucked up the Mie reflection coefficients? Sounds like if I forgot
a factor of
\begin_inset Formula $c$
\end_inset
somewhere.
\end_layout
\begin_layout Subsection
Delga JoO
\begin_inset CommandInset citation
LatexCommand cite
key "delga_theory_2014"
\end_inset
\end_layout
\begin_layout Subsubsection
Parameters
\end_layout
\begin_layout Itemize
\series bold
QEs:
\series default
dipole moment
\begin_inset Formula $\mu=0.38\, e\cdot\mathrm{nm}=18.24\,\mathrm{D}$
\end_inset
(double), otherwise the same parameters as in
\begin_inset CommandInset citation
LatexCommand cite
key "delga_quantum_2014"
\end_inset
.
\end_layout
\begin_layout Itemize
\series bold
Sphere:
\series default
as in
\begin_inset CommandInset citation
LatexCommand cite
key "delga_quantum_2014"
\end_inset
\end_layout
\begin_layout Itemize
\series bold
Detector:
\series default
not stated in the paper
\end_layout
\begin_layout Itemize
\series bold
Numerics:
\series default
looking at the leftmost ball in Fig.
3, it seems that their SVW cutoff is around 12.
\end_layout
\begin_layout Section
TODO
\end_layout
\begin_layout Itemize
Päivi's suggestion: suppress the dipole and let it interact only with the
higher multipoles.
\end_layout
\begin_layout Standard
\begin_inset CommandInset bibtex
LatexCommand bibtex
bibfiles "dipdip"
options "apsrev"
\end_inset
\end_layout
\end_body
\end_document