Some notes on MTMS

Former-commit-id: 0bae107268ac201cccd5a4d44ec677e65ad7fd3a
This commit is contained in:
Marek Nečada 2015-11-09 19:01:25 +02:00
parent 8a4ad1a73a
commit 6eb592320a
2 changed files with 269 additions and 4 deletions

View File

@ -860,6 +860,27 @@
file = {APS Snapshot:/home/necadam1/.zotero/zotero/9uf64zmd.default/zotero/storage/N7X9U595/PhysRevB.85.html:text/html;PhysRevB.85.075303(1).pdf:/home/necadam1/.zotero/zotero/9uf64zmd.default/zotero/storage/VST7NAFK/PhysRevB.85.075303(1).pdf:application/pdf}
}
@incollection{mishchenko_electromagnetic_2003,
series = {Lecture {Notes} in {Physics}},
title = {Electromagnetic {Scattering} by {Nonspherical} {Particles}},
copyright = {©2003 Springer-Verlag Berlin Heidelberg},
isbn = {978-3-540-00709-8 978-3-540-36536-5},
url = {http://link.springer.com/chapter/10.1007/3-540-36536-2_4},
abstract = {The knowledge of absorption and scattering characteristics of small particles is required for a reliable evaluation of the climate forcing caused by clouds and aerosols as well as for studying the physical and chemical properties of atmospheric particulates using remote sensing techniques. Since many particles suspended in the atmosphere are nonspherical, their optical properties may not be adequately described by the classical Lorenz-Mie theory and must be determined using advanced theoretical and experimental techniques. In this chapter, we describe how electromagnetic scattering by small nonspherical particles can be computed and measured; analyze the main effects of nonsphericity on electromagnetic scattering; and discuss various implications of these effects in computations of the earths radiation balance and atmospheric remote sensing.},
language = {en},
number = {607},
urldate = {2015-11-09},
booktitle = {Exploring the {Atmosphere} by {Remote} {Sensing} {Techniques}},
publisher = {Springer Berlin Heidelberg},
author = {Mishchenko, Michael I. and Travis, Larry D.},
editor = {Guzzi, Rodolfo},
year = {2003},
note = {DOI: 10.1007/3-540-36536-2\_4},
keywords = {Geophysics/Geodesy, Math. Applications in Geosciences, Meteorology/Climatology, Optical Spectroscopy, Ultrafast Optics},
pages = {77--127},
file = {mishchenko2003.pdf:/home/necadam1/.zotero/zotero/9uf64zmd.default/zotero/storage/T27R8CQ6/mishchenko2003.pdf:application/pdf;Snapshot:/home/necadam1/.zotero/zotero/9uf64zmd.default/zotero/storage/W6XKVZJQ/10.html:text/html}
}
@article{epton_multipole_1995,
title = {Multipole {Translation} {Theory} for the {Three}-{Dimensional} {Laplace} and {Helmholtz} {Equations}},
volume = {16},
@ -1169,6 +1190,38 @@ Cross-referenced as UMIACS-TR-2001-44},
file = {07.0301171.Li.YLYK (1).pdf:/home/necadam1/.zotero/zotero/9uf64zmd.default/zotero/storage/3WH2FBIB/07.0301171.Li.YLYK (1).pdf:application/pdf}
}
@article{mackowski_calculation_1996,
title = {Calculation of the {T} matrix and the scattering matrix for ensembles of spheres},
volume = {13},
issn = {1084-7529, 1520-8532},
url = {https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-13-11-2266},
doi = {10.1364/JOSAA.13.002266},
language = {en},
number = {11},
urldate = {2015-11-09},
journal = {Journal of the Optical Society of America A},
author = {Mackowski, Daniel W. and Mishchenko, Michael I.},
month = nov,
year = {1996},
pages = {2266},
file = {josaa-13-11-2266.pdf:/home/necadam1/.zotero/zotero/9uf64zmd.default/zotero/storage/V59UV9H9/josaa-13-11-2266.pdf:application/pdf}
}
@misc{mackowski_mstm_2013,
title = {{MSTM} 3.0: {A} multiple sphere {T} -matrix {FORTRAN} code for use on parallel computer clusters},
url = {http://www.eng.auburn.edu/~dmckwski/scatcodes/},
author = {Mackowski, Daniel W.},
year = {2013},
file = {mstm-manual-2013-v3.0.pdf:/home/necadam1/.zotero/zotero/9uf64zmd.default/zotero/storage/RQMQMC7H/mstm-manual-2013-v3.0.pdf:application/pdf}
}
@misc{reid_scuff-em_2015,
title = {{SCUFF}-{EM}},
url = {http://homerreid.dyndns.org/scuff-EM/},
author = {Reid, Homer},
year = {2015}
}
@article{blake_surface_2015,
title = {Surface plasmon-polaritons in periodic arrays of {V}-grooves strongly coupled to quantum emitters},
url = {http://arxiv.org/abs/1504.00938},

View File

@ -89,8 +89,7 @@ Technical notes on quantum electromagnetic multiple scattering
\end_layout
\begin_layout Author
M.
Nečada
Marek Nečada
\end_layout
\begin_layout Affiliation
@ -200,11 +199,22 @@ Available software
\end_layout
\begin_layout Subsection
SCUFF-EM
SCUFF-EM
\begin_inset CommandInset citation
LatexCommand cite
key "reid_scuff-em_2015"
\end_inset
\end_layout
\begin_layout Subsubsection
\family typewriter
SCUFF-TMATRIX
\family default
\begin_inset CommandInset label
LatexCommand label
name "sub:SCUFF-TMATRIX"
@ -214,8 +224,210 @@ name "sub:SCUFF-TMATRIX"
\end_layout
\begin_layout Subsubsection
\family typewriter
SCUFF-SCATTER
\family default
\begin_inset CommandInset label
LatexCommand label
name "sub:SCUFF-SCATTER"
\end_inset
\end_layout
\begin_layout Subsubsection
Caveats
\end_layout
\begin_layout Description
Units.
\family typewriter
SCUFF-SCATTER
\family default
's Angular frequencies specified using the
\family typewriter
--Omega
\family default
or
\family typewriter
--OmegaFile
\family default
arguments are interpreted in units of
\begin_inset Formula $c/1\,\mathrm{μm}=3\cdot10^{14}\,\mathrm{rad/s}$
\end_inset
\begin_inset Foot
status open
\begin_layout Plain Layout
\family typewriter
\begin_inset CommandInset href
LatexCommand href
name "http://homerreid.dyndns.org/scuff-EM/scuff-scatter/scuffScatterExamples.shtml"
target "http://homerreid.dyndns.org/scuff-EM/scuff-scatter/scuffScatterExamples.shtml"
\end_inset
\end_layout
\end_inset
.
\emph on
TODO what are the output units?
\end_layout
\begin_layout Subsection
MSTM
MSTM
\begin_inset CommandInset citation
LatexCommand cite
key "mackowski_mstm_2013"
\end_inset
\end_layout
\begin_layout Itemize
The incident field is a gaussian beam or a plane wave in the vanilla code
(no multipole radiation as input!).
\end_layout
\begin_layout Itemize
The bulk of the useful code is in the
\family typewriter
mstm-modules-v3.0.f90
\family default
file.
\end_layout
\begin_layout Itemize
For solving the interaction equations
\begin_inset CommandInset citation
LatexCommand cite
after "(14)"
key "mackowski_mstm_2013"
\end_inset
, the BCGM (biconjugate gradient method) is used.
\end_layout
\begin_layout Itemize
According to the manual
\begin_inset CommandInset citation
LatexCommand cite
after "2.3"
key "mackowski_mstm_2013"
\end_inset
, they use some method (rotational-axial translation decomposition of the
translation operation), which
\begin_inset Quotes eld
\end_inset
reduces the operation from an
\begin_inset Formula $L_{S}^{4}$
\end_inset
process to
\begin_inset Formula $L_{S}^{3}$
\end_inset
process where
\begin_inset Formula $L_{S}$
\end_inset
is the truncation order of the expansion
\begin_inset Quotes erd
\end_inset
(more details can probably be found at
\begin_inset CommandInset citation
LatexCommand cite
after "around (68)"
key "mackowski_calculation_1996"
\end_inset
.
\end_layout
\begin_deeper
\begin_layout Itemize
\emph on
Not sure if this holds also for nonspherical particles, I should either
read carefully
\emph default
\begin_inset CommandInset citation
LatexCommand cite
key "mackowski_calculation_1996"
\end_inset
\emph on
or look into
\begin_inset CommandInset citation
LatexCommand cite
key "mishchenko_electromagnetic_2003"
\end_inset
which is also cited in the manual.
\end_layout
\end_deeper
\begin_layout Itemize
By default spheres, it is possible to add own T-Matrix coefficients instead.
\end_layout
\begin_deeper
\begin_layout Itemize
\emph on
Is it then possible to insert a T-Matrix of an arbitrary shape, or is it
somehow limited to
\begin_inset Quotes eld
\end_inset
spherical-like
\begin_inset Quotes erd
\end_inset
particles?
\end_layout
\end_deeper
\begin_layout Itemize
Why the heck are the T-matrix options listed in the
\begin_inset Quotes eld
\end_inset
Options for random orientation calculations
\begin_inset Quotes erd
\end_inset
?
\end_layout
\begin_layout Section
Code integration
\end_layout
\begin_layout Standard