2020-06-11 16:26:02 +03:00
|
|
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
|
|
|
|
\lyxformat 584
|
|
|
|
\begin_document
|
|
|
|
\begin_header
|
|
|
|
\save_transient_properties true
|
|
|
|
\origin unavailable
|
|
|
|
\textclass article
|
|
|
|
\use_default_options true
|
|
|
|
\maintain_unincluded_children false
|
|
|
|
\language finnish
|
|
|
|
\language_package default
|
|
|
|
\inputencoding utf8
|
|
|
|
\fontencoding auto
|
|
|
|
\font_roman "default" "default"
|
|
|
|
\font_sans "default" "default"
|
|
|
|
\font_typewriter "default" "default"
|
|
|
|
\font_math "auto" "auto"
|
|
|
|
\font_default_family default
|
|
|
|
\use_non_tex_fonts false
|
|
|
|
\font_sc false
|
|
|
|
\font_roman_osf false
|
|
|
|
\font_sans_osf false
|
|
|
|
\font_typewriter_osf false
|
|
|
|
\font_sf_scale 100 100
|
|
|
|
\font_tt_scale 100 100
|
|
|
|
\use_microtype false
|
|
|
|
\use_dash_ligatures true
|
|
|
|
\graphics default
|
|
|
|
\default_output_format default
|
|
|
|
\output_sync 0
|
|
|
|
\bibtex_command default
|
|
|
|
\index_command default
|
|
|
|
\paperfontsize default
|
|
|
|
\use_hyperref false
|
|
|
|
\papersize default
|
|
|
|
\use_geometry false
|
|
|
|
\use_package amsmath 1
|
|
|
|
\use_package amssymb 1
|
|
|
|
\use_package cancel 1
|
|
|
|
\use_package esint 1
|
|
|
|
\use_package mathdots 1
|
|
|
|
\use_package mathtools 1
|
|
|
|
\use_package mhchem 1
|
|
|
|
\use_package stackrel 1
|
|
|
|
\use_package stmaryrd 1
|
|
|
|
\use_package undertilde 1
|
|
|
|
\cite_engine basic
|
|
|
|
\cite_engine_type default
|
|
|
|
\use_bibtopic false
|
|
|
|
\use_indices false
|
|
|
|
\paperorientation portrait
|
|
|
|
\suppress_date false
|
|
|
|
\justification true
|
|
|
|
\use_refstyle 1
|
|
|
|
\use_minted 0
|
|
|
|
\use_lineno 0
|
|
|
|
\index Index
|
|
|
|
\shortcut idx
|
|
|
|
\color #008000
|
|
|
|
\end_index
|
|
|
|
\secnumdepth 3
|
|
|
|
\tocdepth 3
|
|
|
|
\paragraph_separation indent
|
|
|
|
\paragraph_indentation default
|
|
|
|
\is_math_indent 0
|
|
|
|
\math_numbering_side default
|
|
|
|
\quotes_style english
|
|
|
|
\dynamic_quotes 0
|
|
|
|
\papercolumns 1
|
|
|
|
\papersides 1
|
|
|
|
\paperpagestyle default
|
|
|
|
\tablestyle default
|
|
|
|
\tracking_changes false
|
|
|
|
\output_changes false
|
|
|
|
\html_math_output 0
|
|
|
|
\html_css_as_file 0
|
|
|
|
\html_be_strict false
|
|
|
|
\end_header
|
|
|
|
|
|
|
|
\begin_body
|
|
|
|
|
|
|
|
\begin_layout Title
|
|
|
|
Periodic Green's functions vs.
|
|
|
|
VSWF lattice sums
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\ud}{\mathrm{d}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\abs}[1]{\left|#1\right|}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\vect}[1]{\mathbf{#1}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\uvec}[1]{\hat{\mathbf{#1}}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\lang english
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\ush}[2]{Y_{#1}^{#2}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\ushD}[2]{Y'_{#1}^{#2}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\vsh}{\vect A}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\vshD}{\vect{A'}}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\wfkc}{\vect y}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\wfkcout}{\vect u}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\wfkcreg}{\vect v}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\wckcreg}{a}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset FormulaMacro
|
|
|
|
\newcommand{\wckcout}{f}
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Section
|
|
|
|
Some definitions and useful relations
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
|
|
|
\mathcal{H}_{l}^{m}\left(\vect d\right)\equiv h_{l}^{+}\left(\left|\vect d\right|\right)\ush lm\left(\uvec d\right)
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
|
|
|
\mathcal{J}_{l}^{m}\left(\vect d\right)\equiv j_{l}\left(\left|\vect d\right|\right)\ush lm\left(\uvec d\right)
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
Dual spherical harmonics and waves
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
|
|
|
\int\ush lm\ushD{l'}{m'}\,\ud\Omega=\delta_{l,l'}\delta_{m,m'}
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
|
|
|
\mathcal{J}'_{l}^{m}\left(\vect d\right)\equiv j_{l}\left(\left|\vect d\right|\right)\ushD lm\left(\uvec d\right)
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
Expansion of plane wave (CHECKME whether this is really convention-independent,
|
|
|
|
but it seems so)
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
|
|
|
e^{i\kappa\vect r\cdot\uvec r'}=4\pi\sum_{l,m}i^{n}\mathcal{J}'_{l}^{m}\left(\kappa\vect r\right)\ush lm\left(\uvec r'\right)=4\pi\sum_{l,m}i^{n}\mathcal{J}{}_{l}^{m}\left(\kappa\vect r\right)\ushD lm\left(\uvec r'\right)
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
2020-06-12 10:14:20 +03:00
|
|
|
This one should also be convention independent (similarly for
|
|
|
|
\begin_inset Formula $\mathcal{H}_{l}^{m}$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
):
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
|
|
|
\mathcal{J}_{l}^{m}\left(-\vect r\right)=\left(-1\right)^{l}\mathcal{J}_{l}^{m}\left(\vect r\right).
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
2020-06-11 16:26:02 +03:00
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Section
|
|
|
|
Helmholtz equation and Green's functions (in 3D)
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
Note that the notation does not follow Linton's (where the wavenumbers are
|
|
|
|
often implicit)
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
|
|
|
\left(\nabla^{2}+\kappa^{2}\right)G^{(\kappa)}\left(\vect x,\vect x_{0}\right)=\delta\left(\vect x-\vect x_{0}\right)
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
\begin{align*}
|
|
|
|
G_{0}^{(\kappa)}\left(\vect x,\vect x_{0}\right) & =G_{0}^{(\kappa)}\left(\vect x-\vect x_{0}\right)=-\frac{\cos\left(\kappa\left|\vect x-\vect x_{0}\right|\right)}{4\pi\left|\vect x-\vect x_{0}\right|}\\
|
|
|
|
G_{\pm}^{(\kappa)}\left(\vect x,\vect x_{0}\right) & =G_{\pm}^{(\kappa)}\left(\vect x-\vect x_{0}\right)=-\frac{e^{\pm i\kappa\left|\vect x-\vect x_{0}\right|}}{4\pi\left|\vect x-\vect x_{0}\right|}=-\frac{i\kappa}{4\pi}h_{0}^{\pm}\left(\kappa\left|\vect x-\vect x_{0}\right|\right)=-\frac{i\kappa}{\sqrt{4\pi}}\mathcal{H}_{0}^{0}\left(\kappa\left|\vect x-\vect x_{0}\right|\right)
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
2020-06-12 10:14:20 +03:00
|
|
|
|
|
|
|
\begin_inset Marginal
|
|
|
|
status open
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
\begin_inset Formula $G_{\pm}^{(\kappa)}\left(\vect x,\vect x_{0}\right)=-\frac{i\kappa}{\ush 00}\mathcal{H}_{0}^{0}\left(\kappa\left|\vect x-\vect x_{0}\right|\right)$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
in case wacky conventions.
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
2020-06-11 16:26:02 +03:00
|
|
|
Lattice GF [Linton (2.3)]:
|
|
|
|
\begin_inset Formula
|
2020-06-12 10:14:20 +03:00
|
|
|
\begin{equation}
|
|
|
|
G_{\Lambda}^{(\kappa)}\left(\vect s,\vect k\right)\equiv\sum_{\vect R\in\Lambda}G_{+}^{\kappa}\left(\vect s-\vect R\right)e^{i\vect k\cdot\vect R}\label{eq:Lattice GF}
|
|
|
|
\end{equation}
|
2020-06-11 16:26:02 +03:00
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Section
|
|
|
|
GF expansion and lattice sum definition
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
Let's define
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
2020-06-12 10:14:20 +03:00
|
|
|
\sigma_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}_{l}^{m}\left(\kappa\left(\vect s+\vect R\right)\right)e^{i\vect k\cdot\vect R},
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
and also its dual version
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
|
|
|
\sigma'_{l}^{m}\left(\vect s,\vect k\right)=\sum_{\vect R\in\Lambda}\mathcal{H}'_{l}^{m}\left(\kappa\left(\vect s+\vect R\right)\right)e^{i\vect k\cdot\vect R}.
|
2020-06-11 16:26:02 +03:00
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
Inspired by [Linton (4.1)]; assuming that
|
|
|
|
\begin_inset Formula $\vect s\notin\Lambda$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
, let's expand the lattice Green's function around
|
|
|
|
\begin_inset Formula $\vect s$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
:
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
2020-06-12 10:14:20 +03:00
|
|
|
G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)=-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right)
|
2020-06-11 16:26:02 +03:00
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
2020-06-12 10:14:20 +03:00
|
|
|
and multiply with a dual SH + integrate
|
|
|
|
\begin_inset Formula
|
|
|
|
\begin{align}
|
|
|
|
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{l,m}\tau_{l}^{m}\left(\vect s,\vect k\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}\nonumber \\
|
|
|
|
& =-i\kappa\tau_{l'}^{m'}\left(\vect s,\vect k\right)j_{l'}\left(\kappa\left|\vect r\right|\right)\label{eq:tau extraction}
|
|
|
|
\end{align}
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
The expansion coefficients
|
|
|
|
\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
is then typically extracted by taking the limit
|
|
|
|
\begin_inset Formula $\left|\vect r\right|\to0$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
.
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\begin_layout Standard
|
|
|
|
The relation between
|
|
|
|
\begin_inset Formula $\sigma_{l}^{m}\left(\vect s,\vect k\right)$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
and
|
|
|
|
\begin_inset Formula $\tau_{l}^{m}\left(\vect s,\vect k\right)$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
can be obtained e.g.
|
|
|
|
from the addition theorem for scalar spherical wavefunctions [Linton (C.3)],
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
|
|
|
\mathcal{H}_{l}^{m}\left(\vect a+\vect b\right)=\sum_{l'm'}S_{ll'}^{mm'}\left(\vect b\right)\mathcal{J}_{l'}^{m'}\left(\vect a\right),\quad\left|\vect a\right|<\left|\vect b\right|
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
where for the zeroth degree and order one has [Linton (C.3)]
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
|
|
|
S_{0l'}^{0m'}\left(\vect b\right)=\sqrt{4\pi}\mathcal{H}'_{l'}^{m'}\left(-\vect b\right)
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Marginal
|
|
|
|
status open
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
In a totally convention-independent version probably looks like
|
|
|
|
\begin_inset Formula $S_{0l'}^{0m'}\left(\vect b\right)=\ush 00\mathcal{H}'_{l'}^{m'}\left(-\vect b\right)$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
, but the
|
|
|
|
\begin_inset Formula $Y_{0}^{0}$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
will cancel with the expression for GF anyways, so no harm to the final
|
|
|
|
result.
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
From the lattice GF definition
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
LatexCommand eqref
|
|
|
|
reference "eq:Lattice GF"
|
|
|
|
plural "false"
|
|
|
|
caps "false"
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Formula
|
|
|
|
\begin{align*}
|
|
|
|
G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right) & \equiv\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\mathcal{H}_{0}^{0}\left(\kappa\left(\vect s+\vect r-\vect R\right)\right)e^{i\vect k\cdot\vect R}\\
|
|
|
|
& =\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\mathcal{H}_{0}^{0}\left(\kappa\left(\vect s+\vect r-\vect R\right)\right)e^{i\vect k\cdot\vect R}\\
|
|
|
|
& =\frac{-i\kappa}{\sqrt{4\pi}}\sum_{\vect R\in\Lambda}\sum_{l'm'}S_{0l'}^{0m'}\left(\kappa\left(\vect s-\vect R\right)\right)\mathcal{J}_{l'}^{m'}\left(\kappa\vect r\right)e^{i\vect k\cdot\vect R}\\
|
|
|
|
& =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)\mathcal{J}_{l}^{m}\left(\kappa\vect r\right)e^{i\vect k\cdot\vect R}
|
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
and mutliplying with dual SH and integrating
|
|
|
|
\begin_inset Formula
|
|
|
|
\begin{align*}
|
|
|
|
\int\ud\Omega_{\vect r}\,G_{\Lambda}^{(\kappa)}\left(\vect s+\vect r,\vect k\right)\ushD{l'}{m'}\left(\uvec r\right) & =-i\kappa\sum_{\vect R\in\Lambda}\sum_{lm}\mathcal{H}'_{l}^{m}\left(-\kappa\left(\vect s-\vect R\right)\right)j_{l}\left(\kappa\left|\vect r\right|\right)\delta_{ll'}\delta_{mm'}e^{i\vect k\cdot\vect R}\\
|
2020-06-21 21:47:34 +03:00
|
|
|
& =-i\kappa\sum_{\vect R\in\Lambda}\mathcal{H}'_{l'}^{m'}\left(\kappa\left(-\vect s+\vect R\right)\right)j_{l'}\left(\kappa\left|\vect r\right|\right)e^{i\vect k\cdot\vect R}\\
|
|
|
|
& =-i\kappa\sigma'_{l'}^{m'}\left(-\vect s,\vect k\right)j_{l'}\left(\kappa\left|\vect r\right|\right)
|
2020-06-12 10:14:20 +03:00
|
|
|
\end{align*}
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
and comparing with
|
|
|
|
\begin_inset CommandInset ref
|
|
|
|
LatexCommand eqref
|
|
|
|
reference "eq:tau extraction"
|
|
|
|
plural "false"
|
|
|
|
caps "false"
|
|
|
|
noprefix "false"
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
we have
|
|
|
|
\begin_inset Formula
|
|
|
|
\[
|
|
|
|
\tau_{l}^{m}\left(\vect s,\vect k\right)=\sigma'_{l}^{m}\left(-\vect s,\vect k\right).
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
|
|
|
|
\begin_inset Note Note
|
|
|
|
status open
|
|
|
|
|
|
|
|
\begin_layout Plain Layout
|
|
|
|
TODO maybe also define some
|
|
|
|
\begin_inset Formula $\tau'_{l}^{m}$
|
|
|
|
\end_inset
|
|
|
|
|
|
|
|
as expansion coefficients of GF into dual regular SSWFs.
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\end_inset
|
|
|
|
|
2020-06-11 16:26:02 +03:00
|
|
|
|
|
|
|
\end_layout
|
|
|
|
|
|
|
|
\end_body
|
|
|
|
\end_document
|