qpms/besseltransforms/klarge/5-5-1

14 lines
2.4 KiB
Plaintext
Raw Normal View History

Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 1 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0]
Integrate((Power(E,I*k0*x)*Power(1 - Power(E,-(c*x)),5)*BesselJ(1,k*x))/(Power(k0,5)*Power(x,4)),List(x,0,DirectedInfinity(1)),Rule(Assumptions,n == 1 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0))
-5 c x + I k0 x c x 5 2 2 4 4 6 6 8 8 Pi 2 2 4 4 6 6 8 8 Pi
-(E (-1 + E ) (8 k x (-14783093325 + 1452971520 k x - 309657600 k x + 251658240 k x + 2147483648 k x ) Cos[-- + k x] - 3 (156043762875 - 11416204800 k x + 1589575680 k x - 587202560 k x + 2147483648 k x ) Sin[-- + k x]))
4 4
Integrate::idiv: Integral of ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ does not converge on {0, Infinity}.
19/2 5 27/2
8589934592 k k0 Sqrt[2 Pi] x
Series[Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 1 && q == 5 && κ == 5 && k > k0 && c >= 0 && k >= 0 && k0 >= 0 && n >= 0], {k, Infinity, 10}]
Simplify::time: Time spent on a transformation exceeded 300. seconds, and the transformation was aborted. Increasing the value of TimeConstraint option may improve the result of simplification.
Integrate[(E^(I*k0*x)*(1 - E^(-(c*x)))^5*BesselJ[1, k*x])/(k0^5*x^4), {x, 0, Infinity}, Assumptions -> n == 1 && q == 5 && κ == 5]