Ewald sums WIP

Former-commit-id: c22a5be53375ed175a6a68639887c4b617785a8a
This commit is contained in:
Marek Nečada 2019-07-30 10:26:30 +03:00
parent a6e90b43ae
commit 068e491662
2 changed files with 206 additions and 9 deletions

View File

@ -712,6 +712,12 @@ Consistent notation of balls.
Abstract.
\end_layout
\begin_layout Itemize
Translation operators: explicit expression, also in sph.
harm.
convention independent form.
\end_layout
\begin_layout Itemize
Truncation notation.
\end_layout

View File

@ -136,7 +136,8 @@ Notation
\end_layout
\begin_layout Standard
TODO Fourier transforms, Delta comb, lattice bases etc.
TODO Fourier transforms, Delta comb, lattice bases, reciprocal lattices
etc.
\end_layout
\begin_layout Subsection
@ -277,12 +278,12 @@ noprefix "false"
can be rewritten as follows
\begin_inset Formula
\begin{align*}
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}},\\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m-\vect n}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect 0,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\beta\in\mathcal{P}}W_{\alpha\beta}\left(\vect k\right)\outcoeffp{\vect 0,\beta}\left(\vect k\right) & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),
\end{align*}
\begin{align}
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}},\nonumber \\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m-\vect n}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\nonumber \\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect 0,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\nonumber \\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\beta\in\mathcal{P}}W_{\alpha\beta}\left(\vect k\right)\outcoeffp{\vect 0,\beta}\left(\vect k\right) & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\label{eq:Multiple-scattering problem unit cell}
\end{align}
\end_inset
@ -299,16 +300,35 @@ lattice Fourier transform
of the translation operator,
\begin_inset Formula
\begin{equation}
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect m\in\ints^{d}}\left(1-\delta_{\alpha\beta}\right)\tropsp{\vect 0,\alpha}{\vect m,\beta}e^{i\vect k\cdot\vect R_{\vect m}}.\label{eq:W definition}
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect m\in\ints^{d}}\left(1-\delta_{\alpha\beta}\right)\tropsp{\vect 0,\alpha}{\vect m,\beta}e^{i\vect k\cdot\vect R_{\vect m}},\label{eq:W definition}
\end{equation}
\end_inset
evaluation of which is possible but quite non-trivial due to the infinite
lattice sum, so we explain it separately in Sect.
\begin_inset CommandInset ref
LatexCommand ref
reference "subsec:W operator evaluation"
plural "false"
caps "false"
noprefix "false"
\end_inset
.
\end_layout
\begin_layout Subsection
Computing the Fourier sum of the translation operator
\begin_inset CommandInset label
LatexCommand label
name "subsec:W operator evaluation"
\end_inset
\end_layout
\begin_layout Standard
@ -576,7 +596,178 @@ W_{\alpha\beta}^{\textup{L}}\left(\vect k\right) & = & \frac{\left|\det\rec{\bas
\end_inset
where both sums should converge nicely.
where both sums expected to converge nicely.
We note that the elements of the translation operators
\begin_inset Formula $\tropr,\trops$
\end_inset
in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:translation operator"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be rewritten as linear combinations of expressions
\begin_inset Formula $\ush{\nu}{\mu}\left(\uvec d\right)j_{n}\left(d\right),\ush{\nu}{\mu}\left(\uvec d\right)h_{n}^{(1)}\left(d\right)$
\end_inset
(TODO WRITE THEM EXPLICITLY IN THIS FORM), respectively, hence if we are
able evaluate the lattice sums sums
\begin_inset Note Note
status open
\begin_layout Plain Layout
CHECK THE FOLLOWING EXPRESSION FOR CORRECT FUNCTION ARGUMENTS
\end_layout
\end_inset
\begin_inset Formula
\begin{equation}
\sigma_{\nu}^{\mu}\left(\vect k\right)=\sum_{\vect n\in\ints^{d}\backslash\left\{ \vect 0\right\} }e^{i\vect{\vect k}\cdot\vect R_{\vect n}}\ush{\nu}{\mu}\left(\uvec{R_{n}}\right)h_{n}^{(1)}\left(R_{n}\right),\label{eq:sigma lattice sums}
\end{equation}
\end_inset
then by linearity, we can get the
\begin_inset Formula $W_{\alpha\beta}\left(\vect k\right)$
\end_inset
operator as well.
\end_layout
\begin_layout Standard
TODO ADD MOROZ AND OTHER REFS HERE.
\begin_inset CommandInset citation
LatexCommand cite
key "linton_one-_2009"
literal "true"
\end_inset
offers an exponentially convergent Ewald-type summation method for
\begin_inset Formula $\sigma_{\nu}^{\mu}\left(\vect k\right)=\sigma_{\nu}^{\mu(\mathrm{S})}\left(\vect k\right)+\sigma_{\nu}^{\mu(\mathrm{L})}\left(\vect k\right)$
\end_inset
.
Here we rewrite them in a form independent on the convention used for spherical
harmonics (as long as they are complex
\begin_inset Note Note
status open
\begin_layout Plain Layout
lepší formulace
\end_layout
\end_inset
).
The short-range part reads (UNIFY INDEX NOTATION)
\begin_inset Formula
\begin{multline}
\sigma_{n}^{m(\mathrm{S})}\left(\vect{\beta}\right)=-\frac{2^{n+1}i}{k^{n+1}\sqrt{\pi}}\sum_{\vect R\in\Lambda}^{'}\left|\vect R\right|^{n}e^{i\vect{\beta}\cdot\vect R}Y_{n}^{m}\left(\vect R\right)\int_{\eta}^{\infty}e^{-\left|\vect R\right|^{2}\xi^{2}}e^{-k/4\xi^{2}}\xi^{2n}\ud\xi\\
+\frac{\delta_{n0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)Y_{n}^{m},\label{eq:Ewald in 3D short-range part}
\end{multline}
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
NEPATŘÍ TAM NĚJAKÁ DELTA FUNKCE K PŮVODNÍMU
\begin_inset Formula $\sigma_{n}^{m(0)}$
\end_inset
?
\end_layout
\end_inset
and the long-range part (FIXME, this is the 2D version; include the 1D and
3D lattice expressions as well)
\begin_inset Formula
\begin{multline}
\sigma_{n}^{m(\mathrm{L})}\left(\vect{\beta}\right)=-\frac{i^{n+1}}{k^{2}\mathscr{A}}\sqrt{\pi}2\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!\times\\
\times\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}Y_{n}^{m}\left(\frac{\pi}{2},\phi_{\vect{\beta}_{pq}}\right)\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\gamma_{pq}\right)^{2j-1}\label{eq:Ewald in 3D long-range part}
\end{multline}
\end_inset
where
\begin_inset Formula $\xi$
\end_inset
is TODO,
\begin_inset Formula $\beta_{pq}$
\end_inset
is TODO,
\begin_inset Formula $\Gamma_{j,pq}$
\end_inset
is TODO and
\begin_inset Formula $\eta$
\end_inset
is a real parameter that determines the pace of convergence of both parts.
The larger
\begin_inset Formula $\eta$
\end_inset
is, the faster
\begin_inset Formula $\sigma_{n}^{m(\mathrm{S})}\left(\vect{\beta}\right)$
\end_inset
converges but the slower
\begin_inset Formula $\sigma_{n}^{m(\mathrm{L})}\left(\vect{\beta}\right)$
\end_inset
converges.
Therefore (based on the lattice geometry) it has to be adjusted in a way
that a reasonable amount of terms needs to be evaluated numerically from
both
\begin_inset Formula $\sigma_{n}^{m(\mathrm{S})}\left(\vect{\beta}\right)$
\end_inset
and
\begin_inset Formula $\sigma_{n}^{m(\mathrm{L})}\left(\vect{\beta}\right)$
\end_inset
.
Generally, a good choice for
\begin_inset Formula $\eta$
\end_inset
is TODO; in order to achieve accuracy TODO, one has to evaluate the terms
on TODO lattice points.
(I HAVE SOME DERIVATIONS OF THE ESTIMATES IN MY NOTES; SHOULD I INCLUDE
THEM?)
\end_layout
\begin_layout Standard
In practice, the integrals in
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:Ewald in 3D short-range part"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be easily evaluated by numerical quadrature and the incomplete
\begin_inset Formula $\Gamma$
\end_inset
-functions using the series TODO and TODO from DLMF.
\end_layout
\end_body