Infinite lattices WIP

Former-commit-id: d7afe75b6a8dc2d4ad38b607446c7ab675391b0c
This commit is contained in:
Marek Nečada 2019-07-30 08:48:57 +03:00
parent c51a567f6d
commit a6e90b43ae
3 changed files with 164 additions and 97 deletions

View File

@ -149,11 +149,25 @@
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset FormulaMacro
\newcommand{\dc}[1]{Ш_{#1}}
\end_inset
\end_layout
\end_inset
\begin_inset FormulaMacro
\newcommand{\dc}[1]{|||_{#1}}
\end_inset
\begin_inset FormulaMacro
\newcommand{\rec}[1]{#1^{-1}}
\end_inset
@ -379,6 +393,11 @@
\end_inset
\begin_inset FormulaMacro
\newcommand{\antidelta}{\gamma}
\end_inset
\end_layout
\begin_layout Standard
@ -705,6 +724,10 @@ Example results.
Concrete comparison with other methods.
\end_layout
\begin_layout Itemize
Fix notation (mainly index) clashes in infinite lattices.
\end_layout
\begin_layout Standard
\begin_inset CommandInset include
LatexCommand include

View File

@ -1149,7 +1149,7 @@ where
\begin_inset Formula $I$
\end_inset
is the identity matrix and
is the identity matrix,
\begin_inset Formula $T$
\end_inset
@ -1157,7 +1157,16 @@ is a block-diagonal matrix containing all the individual
\begin_inset Formula $T$
\end_inset
-matrices.
-matrices, and
\begin_inset Formula $\trops$
\end_inset
contains the individual
\begin_inset Formula $\tropsp pq$
\end_inset
matrices as the off-diagonal blocks, whereas the diagonal blocks are set
to zeros.
\end_layout
\begin_layout Standard

View File

@ -96,7 +96,7 @@
\begin_layout Section
Infinite periodic systems
\begin_inset FormulaMacro
\newcommand{\dlv}{\vect b}
\newcommand{\dlv}{\vect a}
\end_inset
@ -135,6 +135,10 @@ Topology anoyne?
Notation
\end_layout
\begin_layout Standard
TODO Fourier transforms, Delta comb, lattice bases etc.
\end_layout
\begin_layout Subsection
Formulation of the problem
\end_layout
@ -151,7 +155,7 @@ noprefix "false"
\end_inset
, but this time, system shall be periodic: let there be a
, but this time, the system shall be periodic: let there be a
\begin_inset Formula $d$
\end_inset
@ -160,110 +164,131 @@ noprefix "false"
\end_inset
can be 1, 2 or 3) lattice embedded into the three-dimensional real space,
with lattice vectors.
set of
with lattice vectors
\begin_inset Formula $\left\{ \dlv_{i}\right\} _{i=1}^{d}$
\end_inset
, and let the lattice points be labeled with an
\begin_inset Formula $d$
\end_inset
(one to three) lattice vectorsAssume a system of compact EM scatterers
in otherwise homogeneous and isotropic medium, and assume that the system,
i.e.
both the medium and the scatterers, have linear response.
A scattering problem in such system can be written as
\begin_inset Formula
\[
A_{α}=T_{α}P_{α}=T_{α}(\sum_{β}S_{α\leftarrowβ}A_{β}+P_{0α})
\]
-dimensional integar multiindex
\begin_inset Formula $\vect n\in\ints^{d}$
\end_inset
where
\begin_inset Formula $T_{α}$
\end_inset
is the
\begin_inset Formula $T$
\end_inset
-matrix for scatterer α,
\begin_inset Formula $A_{α}$
\end_inset
is its vector of the scattered wave expansion coefficient (the multipole
indices are not explicitely indicated here) and
\begin_inset Formula $P_{α}$
\end_inset
is the local expansion of the incoming sources.
\begin_inset Formula $S_{α\leftarrowβ}$
\end_inset
is ...
and ...
is ...
\end_layout
\begin_layout Standard
...
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\sum_{β}(\delta_{αβ}-T_{α}S_{α\leftarrowβ})A_{β}=T_{α}P_{0α}.
\]
\end_inset
\end_layout
\begin_layout Standard
Now suppose that the scatterers constitute an infinite lattice
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{\vect aα}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=T_{\vect aα}P_{0\vect aα}.
\]
\end_inset
Due to the periodicity, we can write
\begin_inset Formula $S_{\vect aα\leftarrow\vect bβ}=S_{α\leftarrowβ}(\vect b-\vect a)$
\end_inset
and
\begin_inset Formula $T_{\vect aα}=T_{\alpha}$
, so the lattice points have cartesian coordinates
\begin_inset Formula $\vect R_{\vect n}=\sum_{i=1}^{d}n_{i}\vect a_{i}$
\end_inset
.
In order to find lattice modes, we search for solutions with zero RHS
There can be several scatterers per unit cell with indices
\begin_inset Formula $\alpha$
\end_inset
from set
\begin_inset Formula $\mathcal{P}_{1}$
\end_inset
and (relative) positions inside the unit cell
\begin_inset Formula $\vect r_{\alpha}$
\end_inset
; any particle of the periodic system can thus be labeled by a multiindex
from
\begin_inset Formula $\mathcal{P}=\ints^{d}\times\mathcal{P}_{1}$
\end_inset
.
The scatterers are located at positions
\begin_inset Formula $\vect r_{\vect n,\alpha}=\vect R_{\vect n}+\vect r_{\alpha}$
\end_inset
and their
\begin_inset Formula $T$
\end_inset
-matrices are periodic,
\begin_inset Formula $T_{\vect n,\alpha}=T_{\alpha}$
\end_inset
.
In such system, the multiple-scattering problem
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:Multiple-scattering problem"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be rewritten as
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect bβ}=0
\]
\begin{equation}
\outcoeffp{\vect n,\alpha}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect m,\beta}=T_{\alpha}\rcoeffincp{\vect n,\alpha}.\quad\left(\vect n,\alpha\right)\in\mathcal{P}\label{eq:Multiple-scattering problem periodic}
\end{equation}
\end_inset
and we assume periodic solution
\begin_inset Formula $A_{\vect b\beta}(\vect k)=A_{\vect a\beta}e^{i\vect k\cdot\vect r_{\vect b-\vect a}}$
\end_layout
\begin_layout Standard
Due to periodicity, we can also write
\begin_inset Formula $\tropsp{\vect n,\alpha}{\vect m,\beta}=\tropsp{\alpha}{\beta}\left(\vect R_{\vect m}-\vect R_{\vect n}\right)=\tropsp{\alpha}{\beta}\left(\vect R_{\vect m-\vect n}\right)=\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}$
\end_inset
, yielding
.
Assuming quasi-periodic right-hand side with quasi-momentum
\begin_inset Formula $\vect k$
\end_inset
,
\begin_inset Formula $\rcoeffincp{\vect n,\alpha}=\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
\end_inset
, the solutions of
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:Multiple-scattering problem periodic"
plural "false"
caps "false"
noprefix "false"
\end_inset
will be also quasi-periodic according to Bloch theorem,
\begin_inset Formula $\outcoeffp{\vect n,\alpha}=\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}$
\end_inset
, and eq.
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:Multiple-scattering problem periodic"
plural "false"
caps "false"
noprefix "false"
\end_inset
can be rewritten as follows
\begin_inset Formula
\begin{eqnarray*}
\sum_{\vect bβ}(\delta_{\vect{ab}}\delta_{αβ}-T_{α}S_{\vect aα\leftarrow\vect bβ})A_{\vect a\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b-\vect a}} & = & 0,\\
\sum_{\vect bβ}(\delta_{\vect{0b}}\delta_{αβ}-T_{α}S_{\vect 0α\leftarrow\vect bβ})A_{\vect 0\beta}\left(\vect k\right)e^{i\vect k\cdot\vect r_{\vect b}} & = & 0,\\
\sum_{β}(\delta_{αβ}-T_{α}\underbrace{\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}}_{W_{\alpha\beta}(\vect k)})A_{\vect 0\beta}\left(\vect k\right) & = & 0,\\
A_{\vect 0\alpha}\left(\vect k\right)-T_{α}\sum_{\beta}W_{\alpha\beta}\left(\vect k\right)A_{\vect 0\beta}\left(\vect k\right) & = & 0.
\end{eqnarray*}
\begin{align*}
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}}-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect n,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect n}},\\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect n,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m-\vect n,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m-\vect n}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\left(\vect m,\beta\right)\in\mathcal{P}\backslash\left\{ \left(\vect 0,\alpha\right)\right\} }\tropsp{\vect 0,\alpha}{\vect m,\beta}\outcoeffp{\vect 0,\beta}\left(\vect k\right)e^{i\vect k\cdot\vect R_{\vect m}} & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),\\
\outcoeffp{\vect 0,\alpha}\left(\vect k\right)-T_{\alpha}\sum_{\beta\in\mathcal{P}}W_{\alpha\beta}\left(\vect k\right)\outcoeffp{\vect 0,\beta}\left(\vect k\right) & =T_{\alpha}\rcoeffincp{\vect 0,\alpha}\left(\vect k\right),
\end{align*}
\end_inset
Therefore, in order to solve the modes, we need to compute the
so we reduced the initial scattering problem to one involving only the field
expansion coefficients from a single unit cell, but we need to compute
the
\begin_inset Quotes eld
\end_inset
@ -274,7 +299,7 @@ lattice Fourier transform
of the translation operator,
\begin_inset Formula
\begin{equation}
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect b}S_{\vect 0α\leftarrow\vect bβ}e^{i\vect k\cdot\vect r_{\vect b}}.\label{eq:W definition}
W_{\alpha\beta}(\vect k)\equiv\sum_{\vect m\in\ints^{d}}\left(1-\delta_{\alpha\beta}\right)\tropsp{\vect 0,\alpha}{\vect m,\beta}e^{i\vect k\cdot\vect R_{\vect m}}.\label{eq:W definition}
\end{equation}
\end_inset
@ -295,14 +320,18 @@ reference "eq:W definition"
\end_inset
is the asymptotic behaviour of the translation operator,
\begin_inset Formula $S_{\vect 0α\leftarrow\vect bβ}\sim\left|\vect r_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect r_{\vect b}\right|}$
\begin_inset Formula $\tropsp{\vect 0,\alpha}{\vect m,\beta}\sim\left|\vect R_{\vect b}\right|^{-1}e^{ik_{0}\left|\vect R_{\vect b}\right|}$
\end_inset
that makes the convergence of the sum quite problematic for any
that does not in the strict sense converge for any
\begin_inset Formula $d>1$
\end_inset
-dimensional lattice.
\begin_inset Note Note
status open
\begin_layout Plain Layout
\begin_inset Foot
status open
@ -318,11 +347,17 @@ Note that
\end_inset
In electrostatics, one can solve this problem with Ewald summation.
\end_layout
\end_inset
In electrostatics, this problem can be solved with Ewald summation [TODO
REF].
Its basic idea is that if what asymptoticaly decays poorly in the direct
space, will perhaps decay fast in the Fourier space.
I use the same idea here, but everything will be somehow harder than in
electrostatics.
We use the same idea here, but the technical details are more complicated
than in electrostatics.
\end_layout
\begin_layout Standard
@ -520,7 +555,7 @@ reference "eq:W definition"
\end_inset
and legendre
and
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:W sum in reciprocal space"