Some notes about ewald sums in [LT]

Former-commit-id: 96d54a76ac45b5b17e88d41361318ff3ca1cec5c
This commit is contained in:
Marek Nečada 2018-09-03 11:07:17 +03:00
parent 83253bfc0c
commit 08f7590f60
1 changed files with 120 additions and 5 deletions

View File

@ -231,6 +231,11 @@ theorems-starred
\end_inset \end_inset
\begin_inset FormulaMacro
\newcommand{\swv}{\mathscr{H}}
\end_inset
\end_layout \end_layout
\begin_layout Title \begin_layout Title
@ -3014,6 +3019,116 @@ reference "eq:prudnikov2 eq 2.12.9.14"
\end_inset \end_inset
\end_layout
\begin_layout Section
Exponentially converging decompositions
\end_layout
\begin_layout Standard
(As in Linton, Thompson, Journal of Computational Physics 228 (2009) 18151829
[LT].)
\end_layout
\begin_layout Standard
[LT] offers a better decomposition than above.
Let
\begin_inset Formula
\begin{eqnarray*}
\sigma_{n}^{m}\left(\vect{\beta}\right) & = & \sum_{\vect R\in\Lambda}^{'}e^{i\vect{\beta}\cdot\vect R}\swv_{n}^{m}\left(\vect R\right),\\
\swv_{n}^{m}\left(\vect r\right) & = & Y_{n}^{m}\left(\hat{\vect r}\right)h_{n}\left(\left|\vect r\right|\right).
\end{eqnarray*}
\end_inset
Then, we have a decomposition
\begin_inset Formula $\sigma_{n}^{m}=\sigma_{n}^{m(0)}+\sigma_{n}^{m(1)}+\sigma_{n}^{m(2)}$
\end_inset
.
The real-space sum part
\begin_inset Formula $\sigma_{n}^{m(2)}$
\end_inset
is already
\begin_inset Quotes eld
\end_inset
convention independent
\begin_inset Quotes erd
\end_inset
in [LT(4.5)] (i.e.
the result is also expressed in terms of
\begin_inset Formula $Y_{n}^{m}$
\end_inset
, so it is valid regardless of normalisation or CS-phase convention used
inside
\begin_inset Formula $Y_{n}^{m}$
\end_inset
):
\begin_inset Formula
\[
\sigma_{n}^{m(2)}=-\frac{2^{n+1}i}{k^{n+1}\sqrt{\pi}}\sum_{\vect R\in\Lambda}^{'}\left|\vect R\right|^{n}e^{i\vect{\beta}\cdot\vect R}Y_{n}^{m}\left(\vect R\right)\int_{\eta}^{\infty}e^{-\left|\vect R\right|^{2}\xi^{2}}e^{-k/4\xi^{2}}\xi^{2n}\ud\xi.
\]
\end_inset
However the other parts in [LT] are convention dependend, so let me fix
it here.
[LT] use the convention [LT(A.7)]
\begin_inset Formula
\begin{eqnarray*}
P_{n}^{m}\left(0\right) & = & \frac{\left(-1\right)^{\left(n-m\right)/2}\left(n+m\right)!}{2^{n}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}\qquad n+m\mbox{ even,}\\
Y_{n}^{m}\left(\theta,\phi\right) & = & \left(-1\right)^{m}\sqrt{\frac{\left(2n+1\right)\left(n-m\right)!}{4\pi\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi},
\end{eqnarray*}
\end_inset
noting that the former formula is valid also for negative
\begin_inset Formula $m$
\end_inset
(as can be checked by substituting [LT(A.4)]).
Therefore
\begin_inset Formula
\begin{eqnarray*}
Y_{n}^{m}\left(\frac{\pi}{2},\phi\right) & = & \left(-1\right)^{m}\sqrt{\frac{\left(2n+1\right)\left(n-m\right)!}{4\pi\left(n+m\right)!}}\frac{\left(-1\right)^{\left(n-m\right)/2}\left(n+m\right)!}{2^{n}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}e^{im\phi}\\
& = & \frac{\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}}{\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}e^{im\phi}
\end{eqnarray*}
\end_inset
Let us substitute this into [LT(4.5)]
\begin_inset Formula
\begin{eqnarray*}
\sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}e^{im\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\\
& = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!Y_{n}^{m}\left(0,\phi_{\vect{\beta}_{pq}}\right)\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1},
\end{eqnarray*}
\end_inset
which basically replaces an ugly prefactor with another, similarly ugly
one.
See [LT] for the meanings of the
\begin_inset Formula $pq$
\end_inset
-indexed symbols.
\end_layout
\begin_layout Standard
To have it complete,
\begin_inset Formula
\[
\sigma_{n}^{m(0)}=\frac{\delta_{n0}\delta_{m0}}{4\pi}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)=\frac{\delta_{n0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)Y_{n}^{m}.
\]
\end_inset
\end_layout \end_layout
\begin_layout Section \begin_layout Section
@ -3100,7 +3215,7 @@ where the spherical Hankel transform
2) 2)
\begin_inset Formula \begin_inset Formula
\[ \[
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right). \bsht lg(k)\equiv\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).
\] \]
\end_inset \end_inset
@ -3110,7 +3225,7 @@ Using this convention, the inverse spherical Hankel transform is given by
3) 3)
\begin_inset Formula \begin_inset Formula
\[ \[
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k), g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\,k^{2}\bsht lg(k)j_{l}(k),
\] \]
\end_inset \end_inset
@ -3123,7 +3238,7 @@ so it is not unitary.
An unitary convention would look like this: An unitary convention would look like this:
\begin_inset Formula \begin_inset Formula
\begin{equation} \begin{equation}
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition} \usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
\end{equation} \end{equation}
\end_inset \end_inset
@ -3177,8 +3292,8 @@ where the Hankel transform of order
is defined as is defined as
\begin_inset Formula \begin_inset Formula
\begin{eqnarray} \begin{eqnarray}
\pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\ \pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\,g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\
& = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\, g(r)J_{-m}(kr)r & = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\,g(r)J_{-m}(kr)r
\end{eqnarray} \end{eqnarray}
\end_inset \end_inset