Some notes about ewald sums in [LT]
Former-commit-id: 96d54a76ac45b5b17e88d41361318ff3ca1cec5c
This commit is contained in:
parent
83253bfc0c
commit
08f7590f60
125
notes/ewald.lyx
125
notes/ewald.lyx
|
@ -231,6 +231,11 @@ theorems-starred
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\begin_inset FormulaMacro
|
||||||
|
\newcommand{\swv}{\mathscr{H}}
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Title
|
\begin_layout Title
|
||||||
|
@ -3014,6 +3019,116 @@ reference "eq:prudnikov2 eq 2.12.9.14"
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Section
|
||||||
|
Exponentially converging decompositions
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
(As in Linton, Thompson, Journal of Computational Physics 228 (2009) 1815–1829
|
||||||
|
[LT].)
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
[LT] offers a better decomposition than above.
|
||||||
|
Let
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{eqnarray*}
|
||||||
|
\sigma_{n}^{m}\left(\vect{\beta}\right) & = & \sum_{\vect R\in\Lambda}^{'}e^{i\vect{\beta}\cdot\vect R}\swv_{n}^{m}\left(\vect R\right),\\
|
||||||
|
\swv_{n}^{m}\left(\vect r\right) & = & Y_{n}^{m}\left(\hat{\vect r}\right)h_{n}\left(\left|\vect r\right|\right).
|
||||||
|
\end{eqnarray*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Then, we have a decomposition
|
||||||
|
\begin_inset Formula $\sigma_{n}^{m}=\sigma_{n}^{m(0)}+\sigma_{n}^{m(1)}+\sigma_{n}^{m(2)}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
.
|
||||||
|
The real-space sum part
|
||||||
|
\begin_inset Formula $\sigma_{n}^{m(2)}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
is already
|
||||||
|
\begin_inset Quotes eld
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
convention independent
|
||||||
|
\begin_inset Quotes erd
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
in [LT(4.5)] (i.e.
|
||||||
|
the result is also expressed in terms of
|
||||||
|
\begin_inset Formula $Y_{n}^{m}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
, so it is valid regardless of normalisation or CS-phase convention used
|
||||||
|
inside
|
||||||
|
\begin_inset Formula $Y_{n}^{m}$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
):
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\sigma_{n}^{m(2)}=-\frac{2^{n+1}i}{k^{n+1}\sqrt{\pi}}\sum_{\vect R\in\Lambda}^{'}\left|\vect R\right|^{n}e^{i\vect{\beta}\cdot\vect R}Y_{n}^{m}\left(\vect R\right)\int_{\eta}^{\infty}e^{-\left|\vect R\right|^{2}\xi^{2}}e^{-k/4\xi^{2}}\xi^{2n}\ud\xi.
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
However the other parts in [LT] are convention dependend, so let me fix
|
||||||
|
it here.
|
||||||
|
[LT] use the convention [LT(A.7)]
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{eqnarray*}
|
||||||
|
P_{n}^{m}\left(0\right) & = & \frac{\left(-1\right)^{\left(n-m\right)/2}\left(n+m\right)!}{2^{n}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}\qquad n+m\mbox{ even,}\\
|
||||||
|
Y_{n}^{m}\left(\theta,\phi\right) & = & \left(-1\right)^{m}\sqrt{\frac{\left(2n+1\right)\left(n-m\right)!}{4\pi\left(n+m\right)!}}P_{n}^{m}\left(\cos\theta\right)e^{im\phi},
|
||||||
|
\end{eqnarray*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
noting that the former formula is valid also for negative
|
||||||
|
\begin_inset Formula $m$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
(as can be checked by substituting [LT(A.4)]).
|
||||||
|
Therefore
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{eqnarray*}
|
||||||
|
Y_{n}^{m}\left(\frac{\pi}{2},\phi\right) & = & \left(-1\right)^{m}\sqrt{\frac{\left(2n+1\right)\left(n-m\right)!}{4\pi\left(n+m\right)!}}\frac{\left(-1\right)^{\left(n-m\right)/2}\left(n+m\right)!}{2^{n}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}e^{im\phi}\\
|
||||||
|
& = & \frac{\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}}{\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!}e^{im\phi}
|
||||||
|
\end{eqnarray*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
Let us substitute this into [LT(4.5)]
|
||||||
|
\begin_inset Formula
|
||||||
|
\begin{eqnarray*}
|
||||||
|
\sigma_{n}^{m(1)} & = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\left(-1\right)^{\left(n+m\right)/2}\sqrt{\left(2n+1\right)\left(n-m\right)!\left(n+m\right)!}\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}e^{im\phi_{\vect{\beta}_{pq}}}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1}\\
|
||||||
|
& = & -\frac{i^{n+1}}{2k^{2}\mathscr{A}}\sqrt{\pi}2^{n+1}\left(\left(n-m\right)/2\right)!\left(\left(n+m\right)/2\right)!Y_{n}^{m}\left(0,\phi_{\vect{\beta}_{pq}}\right)\sum_{\vect K_{pq}\in\Lambda^{*}}^{'}\sum_{j=0}^{\left[\left(n-\left|m\right|/2\right)\right]}\frac{\left(-1\right)^{j}\left(\beta_{pq}/2k\right)^{n-2j}\Gamma_{j,pq}}{j!\left(\frac{1}{2}\left(n-m\right)-j\right)!\left(\frac{1}{2}\left(n+m\right)-j\right)!}\left(\frac{\gamma_{pq}}{2}\right)^{2j-1},
|
||||||
|
\end{eqnarray*}
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
which basically replaces an ugly prefactor with another, similarly ugly
|
||||||
|
one.
|
||||||
|
See [LT] for the meanings of the
|
||||||
|
\begin_inset Formula $pq$
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
-indexed symbols.
|
||||||
|
\end_layout
|
||||||
|
|
||||||
|
\begin_layout Standard
|
||||||
|
To have it complete,
|
||||||
|
\begin_inset Formula
|
||||||
|
\[
|
||||||
|
\sigma_{n}^{m(0)}=\frac{\delta_{n0}\delta_{m0}}{4\pi}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)=\frac{\delta_{n0}\delta_{m0}}{\sqrt{4\pi}}\Gamma\left(-\frac{1}{2},-\frac{k}{4\eta^{2}}\right)Y_{n}^{m}.
|
||||||
|
\]
|
||||||
|
|
||||||
|
\end_inset
|
||||||
|
|
||||||
|
|
||||||
\end_layout
|
\end_layout
|
||||||
|
|
||||||
\begin_layout Section
|
\begin_layout Section
|
||||||
|
@ -3100,7 +3215,7 @@ where the spherical Hankel transform
|
||||||
2)
|
2)
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).
|
\bsht lg(k)\equiv\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -3110,7 +3225,7 @@ Using this convention, the inverse spherical Hankel transform is given by
|
||||||
3)
|
3)
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\[
|
\[
|
||||||
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\, k^{2}\bsht lg(k)j_{l}(k),
|
g(r)=\frac{2}{\pi}\int_{0}^{\infty}\ud k\,k^{2}\bsht lg(k)j_{l}(k),
|
||||||
\]
|
\]
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -3123,7 +3238,7 @@ so it is not unitary.
|
||||||
An unitary convention would look like this:
|
An unitary convention would look like this:
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\, r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
|
\usht lg(k)\equiv\sqrt{\frac{2}{\pi}}\int_{0}^{\infty}\ud r\,r^{2}g(r)j_{l}\left(kr\right).\label{eq:unitary 3d Hankel tf definition}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
@ -3177,8 +3292,8 @@ where the Hankel transform of order
|
||||||
is defined as
|
is defined as
|
||||||
\begin_inset Formula
|
\begin_inset Formula
|
||||||
\begin{eqnarray}
|
\begin{eqnarray}
|
||||||
\pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\, g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\
|
\pht mg\left(k\right) & = & \int_{0}^{\infty}\ud r\,g(r)J_{m}(kr)r\label{eq:unitary 2d Hankel tf definition}\\
|
||||||
& = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\, g(r)J_{-m}(kr)r
|
& = & \left(-1\right)^{m}\int_{0}^{\infty}\ud r\,g(r)J_{-m}(kr)r
|
||||||
\end{eqnarray}
|
\end{eqnarray}
|
||||||
|
|
||||||
\end_inset
|
\end_inset
|
||||||
|
|
Loading…
Reference in New Issue